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Outline

1) Evolution of application scope: the continuum
1) From smart sensors to HPC
2) Artificial Intelligence (Deep Learning) loads
3) Implications for the architecture



FROM SMART SENSORS TO HPC
e



Mainstream “business’” model

Smart sensors

Internet of
Things

Data Analytics /
Cognitive
computing

Cloud / HPC




HOW MUCH COULD WE SAVE
WITH CONNECTED MACHINES?

A 1% improvement in efficiency in these five industries

could add up to 3276 Billion over 15 vears

OIL & GAS

ECONOMICAL DRIVE OF
CONNECTED THINGS:
BETTER EFFICIENCY IN
RESOURCES AND ENERGY

POWER

HEALTHCARE

by planning by helping
more efficient | workers

need
maintenance




Mainstream “business’” model

Smart sensors

Internet of
Things

Data Analytics /
Cognitive
computing

Cloud / HPC
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HPC in the loop
~ E Y
Smart sensors

Cyber Physical
Entanglement

Data Analytics /
Cognitive
computing

Cloud / HPC

Internet of
Things
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HIGH PERFORMANCE SYSTEMS IN THE LOOP

aka Cognitive CPS
aka Intelligent Embedded Systems
aka Autonomous CPS (ACPS)

Reduce latency ‘o Smart sensors ‘
Safety requirements )

Enabling Intelligent
_ data processing at
Reduce bandwidth , _ the edge:
Privacv constraints Cyber Physical Internet of € eage.
y b Entanglement Fog computing
Reduce energy P Edge computing
Stream analytics
| services restaate
Data Analytics
Cognitive
[ Bl computing

True collaboration

between edge devices
and the HPC/cloud
= creating a

ENABLING EDGE INTELLIGENCE .
Transforming data into information as early as possible continuum

[12




SRA-4: THE INCREASING INTERPLAY OF SIMULATION, Al, IOT AND ANALYTICS

Science MFF2021-2027: Single Market, Digital and Innovation(*) . Industrial users

energy
aviation
automotive

. .. . . + manufacturing
funding digital transformation Thematical clusters, - pharmaceuticals

beyond 2020 R&l missions

¥ ¥ .

Applications development: design, algorithms, methods, workflows

energy
life science

weather and climate . .
future materials Digital Europe programme Horizon Europe

fundamental sciences

Technology infrastructure: architectures, hardware, software, 1/0, storage, algorithms, programming env., tools...

new(Jesteadsiorractediogi
nanoelectronics
photo-electronics

(*) http://www.europarl.europa.eu/RegData/etudes/

BRIE/2018/628231/EPRS_BRI(2018)628231_EN.pdf From ETP4HPC
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http://www.europarl.europa.eu/RegData/etudes/

Simulation

Machine
Learning

Interacting with the world:
Intertwined with
CPS requirements
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3 PILLARDS OF FUTURE HPC

Simulation

Interacting with the world:
: Intertwined with
CPS requirements
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ARTIFICIAL INTELLIGENCE (DEEP LEARNING) LOADS
e



expectations

Sma

Digital Twin
Biochips
rt Workspace

Brain-Computer Interface
Autonomous Mobile Robots

Deep Neural Network ASICs §

Quantum Computing

Volumetric Displays

5G ®

Self-Healing System Technology
Conversational Al Platform
Autonomous Driving Level 5

Edge Al

Exoskeleton

Blockchain for Data Security
Knowledge Graphs

4D Prin

ting

Artificial General Intelligence

Smart Dust

Flying Autonomous Vehicles

The Hype cyc

—

‘o Virtual Assistants

Blockchain

l Autonomous Driving Level 4

Mixed Reality

Neuromorphic
Hardware

Smart Fabrics

Augmented Reality

Biotech — Cultured or Artificial Tissue

le - 2018

DNN Asics

Deep Learning
Virtual assistants

Autonomous Driving

As of August 2018
) Peak of
Innovation e Trough of Slope of Plateau of
Trigger infiated Disillusionment Enlightenment Productivit
99 Expectations ' * g ‘ ‘ y
time

Plateau will be reached:

O less than 2 years

@ 2to5years

@ 5to10years A more than 10 years

® obsolete before plateau
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ONE ASPECT OF Al: PERSONAL ASSISTANTS....

Google Assistant Apple Siri Amazon Alexa Baidu’'s DuerOS
(1 billon devices) (+500 millions devices) (+100 millions devices) (+100 millions devices)

|18



DEEP LEARNING AND VOICE RECOGNITION

100%
According to Microsoft's
speech group:
Using DL
10%
4% '.‘ Google Assistant
2%
1%
1990 2000 2010

Deep Learning in Speech Recognition
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DEEP LEARNING AND VOICE RECOGNITION

" The need for TPUs really emerged about six years ago, when
we started using computationally expensive deep learning
models in more and more places throughout our products. The
computational expense of using these models had us worried.
If we considered a scenario where people use Google voice
search for just three minutes a day and we ran deep neural
nets for our speech recognition system on the processing units
we were using, we would have had to double the number of
Google data centers!"

[https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html]

[ 20



GOOGLE’S CUSTOMIZED HARDWARE...

.. required to increase energy efficiency
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : training and inference in a 180 teraflops4s (180 x 10'2Flops,¢) board
(over 200W per TPUZ2 chip according to the size of the heat sink)

| 21




GOOGLE’S CUSTOMIZED TPU (V2) HARDWARE...

.. required to increase energy efficiency
with accuracy adapted to the use (e.g. float 16)

Google’'s TPU2 : 11.5 petaflops,g of machine learning number crunching
(and guessing about 400+ KW..., 100+ GFlops4e/W)

From Google Peta = 10'® = million of milliard

| 22



GOOGLE’S CUSTOMIZED TPU (V3) HARDWARE...

Chip TPUV1 TPUV2 TPUV3
Announced 2016 May-17 May-18
Access Internal-Only Service Beta Undisclosed
Introduction 2015 Feb 2018 Undisclosed
Process 28nm 20nm est. 16/12nm est.
Die Size ~300mm2 Undisclosed Undisclosed
TOPS 92/23 45 90
Matrix Input INT8/INT16 bfloat16 bfloat16
Memory 8GB DDR3 16GB HBM 32GB HBM
CPU Interface PCle 3.0 x16 PCle 3.0x8 PCle 3.0 x8 est.
Power Consumption 40W 200-250W est. 200W est.

A Brief Guide to Floating Point Formats

fp32: Single-precision IEEE Floating Point Format Range: ~1e73® to ~3e3®
Exponent: 8 bits Mantissa (Significand): 23 bits

Bl cccccc & MMMMMMMMMMMMMMMMMMMMMMM

fp16: Half-precision IEEE Floating Point Format Range: ~5.96e"® to 65504
Exponent: 5 bits Mantissa (Significand): 10 bits

Bl ccccmMmMmMmMmvmmmvmmmm

bfloat16: Brain Floating Point Format Range: ~1e73% to ~3e%®

Exponent: 8 bits Mantissa (Significand): 7 bits

Bl = ccccccmmmmmmm ok
Hi: 010

From https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/
| 23




ALPHAGO ZERO: SELF-PLAYING TO

Alph oéggg
Sta?tlgfrom

From doi:10.1038/nature24270 (Received 07 April 2017) 24




ALPHAZERO FROM DEEP MIND : COMPUTING RESOURCES

X 5000 =200 KW (for the boards only)*
X 40: days...

Peta = 101% = million of milliard
* https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpl " =9/ =Gping
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EXPONENTIAL INCREASE OF COMPUTING POWER FOR Al
TRAINING

“Since 2012, the amount of compute used in the largest Al training runs has been increasing exponentially
with a 3.5 month-doubling time...

(by comparison, Moore’s Law had an 18-month doubling period)™

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000
[ ]
1,000
100
f=)
(=
c 10
[
T
(€0}
©
L4 1 ®
o
O
= )
© 01
)
o
001
Peta= 101° 00001
2013 2014 2015 2016 2017 2018 2019
* https://blog.openai.com/ai-and-compute/ Year | 26



ALWAYS MORE COMPUTING RESOURCES

Roadmap for Integration of Deep Leaming and Simulation for Predictive Oncology

1YF

100EF

10EF

HPC: exafloprer
(1078 flops)

Deep hyperparameter optimized
H H persistent agglomerative ensemble
Machine Learning Approaches R e
rescriptive Cancer
models for prescriptive

Large-scale persistent oncology

online learning based

networks Precision predictive
A oncology medels for >
Deep multimodal 100 different primary
ensemble multitask cancer types
networks

Single cancer (multi-tumor
and ensemble) models
(mechanistically and
empirically informed)

Re-enforcement learning
applied to hybrid modeling
problems

Asynchronously trained

B Multi-mechanism ensembles for
multi-task networks

individual cancers
hybrid-informed cancer drug

Deep ensemble networks response model ensembles

combining generative
networks and classification

—

Multi-task networks

Single Cell models from multi-
mechanism models and
ensembles

trained with transfer Multi-mechanism biology single
100PF leaming ensemble empirically informed
cancer drug response models
Convolutional and E
recurrent classification Single
networks mechanism
7 biol
10PF Single e:'\sggnybles
mechanism . .
et Cancer Modeling Obje o
single trial T rTaes
16 ale, Computing Project —
“*Yo4ay 2020 2022 2025

From Paul Messina, Argonne National Laboratory
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Data - Data
Acquisition Exploration

- Data
Preparation

- Feature
Engineering

—=>

Model
Selection

=)

Hyper
qu_el - Parameter
Training Tuning

=)

Predictions

Traditional Machine Learning Workflow

r /1

Hyper
D?t-a- Data- Dats - F?atur? MOd?l qu.el Parameter Predictions
Acquisition Exploration Preparation Engineering Selection Training Tuning
AutoML Workflow From Forbes

Auto-ML uses optimization approaches to select a “good” set of

parameters “automagically”

It is generally very computing expansive (configuration space

search)

Use clever algorithms to avoid exploring all the configuration space
More details for example in http://automl.or

| 28




CHARACTERIZATION OF DEEP LEARNING LOADS
e



MACHINE LEARNING
(DEEP LEARNING)
LEARNING PHASE

74

Specialist

Big Data

Observations

Human defines the learning
data set, not the algorithm
Large set of input data for
learning phase

Low precision floating point
Large number of operations
(Stochastic) gradient descent

| 32



MACHINE LEARNING
(DEEP LEARNING) Low precision arithmetic

INFERENCE PHASE Medium to low number of
operations

Co-location computing and
storage (“computing in
memory”)

Should satisfy the application
non-functional requirements

Inference phase

But for large number of inferences (users)
-> more cloud like structure, high throughput

| 33




REINFORCEMENT LEARNING:
DYNAMIC PROGRAMMING + DEEP LEARNING

HAL 9000

Rewards

Observations

Learns to maximize rewards Respond to action

| 34




REINFORCEMENT LEARNING:
DYNAMIC PROGRAMMING + DEEP LEARNING

Mixed precision arithmetic

Very high number of operations

Large internal data manipulation

« Mainly co-location computing and
storage (“computing in memory”)
High level of parallelism
Minimization of energy functions

Observations

Learns to maximize rewards Respond to action

|35




REINFORCEMENT LEARNING:
DYNAMIC PROGRAMMING + DEEP LEARNING

HAL 9000

Rewards

Simulation

Learns to maximize rewards Respond to action

| 36




COMPLEMENTARITY OF SIMULATION AND IA TECHNIQUES

HAL 9000

Simulation for improving 1A

Converged architecture:
- From float16 to double precision
- Increasing memory per node

- Flexible partitioning

- Increase ratio communication /
compute or compute in memory

Simulation

IA for improving simulations

|37




Outline

1) Evolution of application scope: the continuum
2) Hardware heterogeneity and orchestration
3) Software?



Outline

2) Hardware heterogeneity and orchestration
1) End of Dennard’s scaling
2) Heterogeneous accelerators
3) Heterogeneous integration



END OF DENNARD’S SCALING
e



WHAT WILL BE THE NEXT TECHNOLOGY?

120 Years of Moore’s Law

MECHANICAL V"‘T%’B‘EM TRANSISTOF INTEGRATED CIRCUIT

And after CMOS?

DATA GENI
NOVA

Calculations per second per constant dollar

e ——n—————————————
1'900 /’905 19]0 .’915 1920 1925 19-“0 1935 ,"g("o 1945 795.0 /'955 !960 1965 i 0 !9)5 ’95'.9 )'95,5 1990 1995 .9000 .?005 3(),0 20]5 <,

Year I
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Exponential increase of performances in 33 years

(o
-\
‘\(\"“‘\‘\J
<0

Star Trek Enterprise
Year: about 2290
27 times the speed of light?

Production car of 1985 X 100 000 000
Lamborghini Countach 5000QV  in 33 years
Max speed 300 Km/h

| 42



THE END OF-MOORE'STHAW DENNARD SCALING

Parameter Classic _
(scale factor = a) Scaling Ever{:gg;? was
Dimensions |/a «  Wait for the next
technology node
Voltage | /a * Increase
frequency
Current | /a - Decrease Vdd
— Similar increase
Capacitance |/a of sequential
performance
Power/Circuit | /a2 — No need to
recompile (except
Power Density [ if architectural
improvements)
Delay/Circuit |/a

Source: Krisztian Flautner “From niche to mainstream: can critical systems make the transition?”
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Technology evolution

Transistor 2D

V back biasing

Fully Depleted Silicon
on Insulator (FDSOI)

Transistor

| 47




Technology evolution
FDSOI

(12FD I Next Gen . | e
\\ oL 2 Silicon Quantum bits

= = Non planar / trigate / stacked Nanowires

-
-

//
FinFET
28nm 10nm 2019 5nm
) o o ° ° ° /
14nm 2017 7nm
Disruptive scaling . Steep slope devices
Alternative to scaling — Mechanical switches
and diversification

~ ' _

Monolithic 3D for 3D VLSI




HETEROGENEOUS ACCELERATORS
e



The problem:

Expected case scenario

7000 Exponential power
™ Production consumption

M Data centers use

M Wireless networks access
use

M Fixed access WiFi use

M Fixed access wired use

M Consumer devices use

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

From “Total Consumer Power Consumption Forecast”, Anders S.G. Andrae, October 2017

| 50
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SPECIALIZATION LEADS TO MORE EFFICIENCY EFFICIENCY

Operation
CPU 1690 pJ
GPU 140 pJ

FPGA with HLS
“software programming
space and not only time”

Fixed function 1N n |

Atiiy T
e g i

Source from Bill Dally (nVidia) « Challenges for Future Computing Systems »
HIPEAC conference 2015
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TODAY’S HPC ARE HETEREGENEOUS

NVIDIA TESLA V100

World’s First Fused HPC and Al Processor

OLTA” TENSOR CORE GPU
640 TENSOR CORES

T
1sor Ops

]

5120 NVIDIA CUDA® CORES W it MEMORY
15.7 TFLOPS FP32 St : 326B/16GB HBM2
7 8 TFLOPS FP&4 -

TENSOR CORE GPU | 21 BILLION TRANSISTORS | 125 TFLOPS | REVOLUTIONARY HPC AND Al PERFORMANCE

» 3.3 peak exaops for emerging Al workloads
+ 4,608 compute nodes, each containing two 22-core IBM Power9 processors
and six Nvidia Tesla V100 GPUs

* Interconnected with dual-rail Mellanox EDR 100Gb/s InfiniBand.
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TOP500 #1 & #2: NVIDIA TESLA V100 GPU + IBM POWER9 CPU

Server Block Diagram
Power Systems AC922 with NVIDIA Tesla V100 with Enhanced NVLink GPUs NVIDIA TESLA V100 SPECIFICATIONS

Source NVIDIA

Source IBM
DOUBLE-PRECISION

EDR/HDR o By AlE, NVIDIA GPU Boost

i >C -7‘;'-1 7 . 8 teraFLOPS

SINGLE-PRECISION

1 5 . 7 teraFLOPS

DEEP LEARNING

1 2 5 teraFLOPS

NVMe Flash Storage
(PCI-E x8 gen 4.0)

e - — - Bi-Directional NVLINK

300 s

)y 1511 POWERI SMP bus

[essssmnll]  Direct Attach DDR4 memory (~170GB/s BW per CPU) MEMORY
Col CAPACITY

ﬁ PCI-Express x8 (gen 4.0) bus with CAPI for 1B (12.8GB/s) CoWoS Stacked HBM2
1x PO-E 2 4.0 from each CPU to 1B (multi-sccket host direct) 3 2 /I é
GB HBM2

PCI-Express x8 (gen 4.0) bus with CAPI {12.8GB/s) ° Compute performance from GPU
ﬁ 25GB/s NVIDIA NVLink Interconnect {S0GB/s bi-directional) BANDWIDTH
75G8/s of bandwidth between points {3 links) 9 0 O
GB/s

m) Heterogeneous integration driven by compute energy efficiency

From Denis Dutoit
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AMD'S EPYC AND RADEON TO POWER EXASCALE SUPERCOMPUTER & 2019

https://www.amd.com/es/products/frontier

Performance target: 1.5 exaflops; 40 MW; 37 GFLOPS/W
L gl AN'ZL AR AL Compute node: x1 CPU + x4 GPU + coherent fabric

_———-
b i R ADE ON INSTINCT

“ A i e

\ | - HIGH PERFORMANCE GPU
_—c OPTIMIZED FOR HPC AND Al

HIGH PERFORMANCE CPU """"" HPC-Customized Extensive Mixed Precision Ops forOptimum | High-Bandwidth Memory (HBM) for
CUSTOMIZED FOR HPC U = ~ 5i Compute Engines Deep Learning Performance Maximum Throughput

CustomAMD EPYC processor Utilizes Future “Zen” Core High- Al-Optimized for

optimizedforHPC and Al Performance Architecture SupercomputingWorkloads I N FI N ITY FABRI c

High-Bandwidth, Low-Latency Connection
Between Custom Coherent Fabric
CPUand GPU

Connects4:1
GPU to CPU PerNode

m) Heterogeneous integration requires high-bandwidth, low-latency connection

From Denis Dutoit
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52ND EDITION OF THE TOP500 LIST (NOVEMBER 11™, 2018)

H_eteroge_neous Yes
integration ?

Yes

No

Yes

Yes

Qe
The List.
Rmax Rpeak
Rank Site System (TFlop/s) (TFlop/s)
1 DOE/SC/Oak Ridge Summit - IBM Power System AC922, IBM 143,500.0 200,794.9
National Laboratory POWERY 22C 3.07GHz, NVIDIA Volta
United States GV100, Dual-rail Mellanox EDR Infiniband
IBM
2 DOE/NNSA/LLNL Sierra - IBM Power System S922LC, IBM  94,640.0 125,712.0
United States POWER?9 22C 3.1GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR Infiniband
IBM / NVIDIA / Mellanox
3 National Supercomputing  Sunway TaihuLight - Sunway MPP, 93,014.6 125,435.9

Center in Wuxi

Sunway SW26010 260C 1.45GHz, Sunway

China NRCPC
4 National Super Computer Tianhe-2A - TH-IVB-FEP Cluster, Intel 61,444.5 100,678.7
Center in Guangzhou Xeon E5-2692v2 12C 2.2GHz, TH Express-
China 2, Matrix-2000
NUDT
5 Swiss National Piz Daint - Cray XC50, Xeon E5-2690v3 21,230.0 27,1543

Supercomputing Centre
(CSCs)
Switzerland

12C 2.6GHz, Aries interconnect , NVIDIA
Tesla P100
Cray Inc.
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BusinessWire HOME SERVICES NEWS EDUCATION ABOUTUS

A Berkshire Hathaway Company

GPUs and CPUs Currently Lead in Market Share, but ASICs will Capture the Lead by 2022, with Expanded Opportunities for
SoC Accelerators and FPGAs

May 06, 2019 07:20 AM Eastern Daylight Time

s |
Deep Learning Chipset Unit Shipments by Type, World Markets: 2018-2025

3,500
uCPU
. = GPU
2,500 MEEGA
= ASIC
% 2,000 = SoC Accelerator
€ 1,500
1,000
500 I
m B
2018 2019 2020 2021 2023 2024 2025

e Source: Tractica




GOING NEURO-INSPIRED: “SPIKING” NEURAL NETWORKS
Using another way of coding information...not using bits NeuRAM3E

Technology 28nm CMOS 14 nm CMOS

28 nm FDSOI

Supply Voltage 0.7-1.05V 0.5-1.25V 0.73-1V
Design Type Digital Digital Mixed-signal
Neurons per core 256 Max 1k 256

Core Area 0.094 mm? 0.4 mm? 0.36 mm?
Computation Time multiplexing Time multiplexing Parallel processing
Fan In/Out 256/256 16/4k 2k/8k
On-line Learning No Programmable STDP
Synaptic Operation / Second / 46 GSOPS/W 300 GSOPS/W
Watt

Energy per synaptic operation 26 pJ 23.6 pJ <2 pJ
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FUSING PARADIGMS AT HARDWARE LEVEL

At the hardware level, the good old Von Neumann/ CMOS partnership can act as a computing substrate,
or orchestrator of various accelerators/technologies

- Acting as coordination / communication node
- Allowing Hardware / Software integration

Qubits on Silicon

Maurand et al,
Nature Com.,
Jul. 2016.

o _ Graphica
Coordination Engine Engine
L Von Neumann style
CMOS Technology
binary data

NVM Synapses
, on Silicon

Semantic
Engine

Numerical
Engine

Neuro
engine

Quantum
engine

Matrix

D. Roclin et al, IEEE

CMOS Substrate NanoArch, 2014.

Slide from Christian Gamrat |58




NON VOLATILE MEMORIES

« Can change the structure of
memory hierarchy?

+ 64/128 addressing scheme

= Do we still need files?

= Direct access of objects

PCM

GST
GeTe
GST + HfO,

Thermal

effect

Electrochemical

effect

Electronic effect oxygen vacancies
| 59




NEW ARCHITECTURE PARADIGMS WITH NVM

Execution time
@ Memory stalls

. Compute —emmmmeaeee

Current
system

o

Memory bound

1-Smart SSDs

2-Main
memory
replacement

3-Cache
replacement

.
4-Post-Exascale
Architectures

Non-Volatile Memories invade logic.
Data movement energy reduced.

i1

L

Balanced architectures

architecture
cpulcru cPu|crPu ceulceul | | [crulcpu
L1$(L1$ L1$(L1$ L1$|L1$ L1s|L1s
L2/L3 $ L2/L3 $ L2/L3 $ NVM
DRAM DRAM DRAM| NVM DRAM
2}
[ Nl/}M |
Disk/SSD Disk/SSD Disk/SSD Disk/SSD

Disruptive
architecture

L]
I:II:IEI
L]

NVM
O MO

O
L 5

Other nodes

From Denis Dutoit
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SOLVING THE ENERGY CHALLENGE: COST OF MOVING DATA

The High Cost of Data Movement

20mm

oy 26pJ | 256pd  16nd 1 pawn

256-bit Efficient
buses S00pd [ ] off-chip link

256-bit access
8 kB SRAM

Avoiding data movement:
Computing in/near memory

Source: Bill Dally, « To ExaScale and Beyond »
www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf
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PROCESSOR ARCHITECTURE EVOLUTION

Moore’s law slow-down

End of D d’ li Heterogeneous j Quantum
nd of Dennard’s scaling _ _ ¢/ Computin
architecture for Disruptive P g
Many-core energy efficiency . Architecture for
architecture for 5 data management
Mono-core arallelism : ¥
architecture for s P NIC ,
. LY e — Data Centric {
single thread et InterconnectI
performance —

CPU

ache

In Memory Computing, Memory

Neuromorphic Computing.

NoC + LLC

|_caers ]

invades
logic

sessEEas

o ooo

NIC  ~2006 ~2026...

(Network :
InterConnect) °

From Denis Dutoit
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HETEROGENEOUS INTEGRATION
e



2.5 stacking with chiplets and interposers
\ for heterogeneous integration
0\\\?’ > Scalability
&> <) ~ Dedicated die function
e'{\‘g(oeo » IP re-use
» Compacity
» Performances

> ....And cost! [SRAMS/ LogiCJ

Non-CMOS
componant/
Logic

” 2
,'/ﬁ' o g
>

.
" .

7

- -

//

SE
//
3

Sensor / logic
+ Memory

' : T ey And.even more'to
imagine

The future of 3D VLSI @ Leti
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FROM ADVANCED PACKAGING TECHNOLOGIES ....

... TO CHIPLETS

Advanced Integration

SiP
Multi-Chip-Module

__r___r_

Interconnect density: 100um x 100um

3D
Die stacking Interposer
based
m
Interconnect Interconnect
density: 10pum x density: 10pm x
10um 10pm
~
-

b

CHIPLET
partitioning

Custom chiplets  Commercial chiplets

Es= 8=

Source: GeorgiaTech

From Denis Dutoit
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From AMD ....

2202018 1245 GT

AMD Tackles Coming "Chiplet"
Revolution With New Chip Network
Scheme

Active silicon interposers could make for smaller,
better computers, but the networks need to mesh

By Samuel K. Moore

https://spectrum.ieee.org/tech-talk/semiconductors/design/amd-tackles-coming-
chiplet-revolution-with-new-chip-network-scheme

CPU chiplet
FAT,
L2 / A

i

GPU chiplet

[J. Yin et al., “Modular Routing Design for
Chiplet-based Systems”, ISCA’2018]

SOME RECENT ANNOUCEMENTS
... ON CHIPLETS & ACTIVE INTERPOSERS

...and INTEL

Intel unveils a groundbreaking way to
make 3D chips

"Foveros" will let Intel stack logic chips on top of each other.

o devindra Hardawar, @d 39 870
n Gadgetry —

05 TECHNOLOGY

3D face-face chip stacking for heterogeneous integration
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FOVEROS Technology

As it's getting more difficult to cram transistors next to each other in chips,
and we near the end of Moore's Law, the only choice is to go vertical.
Literally. That's the essence of 3D chip design, and it's the crux of a major

https://www.engadget.com/2018/12/12/intel-foverus-3d-chip/?yptr=yahoo&guccounter=2
From Denis Dutoit
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EUROPEAN PROCESSOR INITIATIVE

EPI IP’s Launch Pad
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COMMON PLATFORM FOR MULTI-LEVEL HETEROGENEOUS INTEGRATION

Heterogeneous
socket

PCle gen5
links

Homogenegous/
Heterogeneous

Cfﬂplet

o I I D2D links
0 to adjacent chiplets

FETTTITTITITT

Pl | ...
Heterogeneous SoC:
e
— DDR
Heterogeneous memories
memories

General processing core
EPAC - EPI Accelerator

MPPA - Multi-Purpose Processing
Array

From Denis Dutoit eFPGA - embedded FPGA .




ELECTRONS VERSUS PHOTONS

Electrons: Easy to create and interface
Attenuation with the distance (Ohm’s law)

Photons: Energy demanding for creation and
interfacing

Low attenuation with the distance
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OFF-CHIP PHOTONICS

Photonics: cost in sending information, nearly nothing in transmission

Micro-

Driver / ;
Fiber A pillars
Ferrule -

PIC
D () O O

(.
()
=
()
o
w
(=
(0]
pas
-
©
=
)
o
o

Off board: AOC,
optical modules

Off chip: Optical I1/0 .
chip: Optica Time
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IN-PACKAGE PHOTONICS

Thermal Dissipation
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Off board: AOC,
optical modules

Optical network
in package

Nou

Off chip: Optical I/0O
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DEMONSTRATION OF A THERMALLY TUNED WDM ELECTRO-OPTICAL LINK

q—-“' -"-““‘""‘_‘““_"Ww""“"“""'—‘"““"‘ ‘
v

TNl OO

=» 1Tbps/mm? bandwidth density
. o =» Tight technology integration of
gr* LCOTICY E/O ring modulators within a 3D stack

— =» Integrated thermal tuning
robust to compute fabric heating

[LETI: Y. Thonnart, ISSCC2018]
No wobulation

Wob+Thermal tuning deactivated Wob.+Thermal tuning activated

- -

Y. Thonnart & al. ISSCC’2018 From Denis Dutoit 7




Packaging

Architecture

Si-Photonics

LETI’S SI-PHOTONICS ROADMAP FOR POST-EXASCALE COMPUTING

E/O Micro rings

(MR

olotoliofoliol

Wob.+Thermal tuning activated
R —
C L L
| V- — —
[ ———

Thermal tuning

=<
S NS
= N
_—

Target demonstrator = 2021
96-core cache-coherent processor
Generic E/O chiplets

8-node optical NoC

* 576 Gbit/s aggregated bandwidth
* 384 microring resonators
* ~10 ns electro-optical latency

From Denis Dutoit |74




POTENTIAL SOLUTION FOR POST EXASCALE BOARD

Time Heterogeneity & everything close

SW tools, benchmarks and
desigh methodologies
SW tools, benchmarks

and design methodologies energy aware
e New
ﬁ e Active silicon interpose Memories
High density 3D (NVM) close
e h I H
A

Photonic

CoolCube™ l_'ﬁ'p
TiT
J.-I_

" New Memory Memory
Technologies

", Scaling with FF and
Neuromorphic .. CoolCube™

From Denis Dutoit 175




Outline

1) Evolution of application scope: the continuum

2) Hardware heterogeneity and orchestration
3) Software?



PARALLELISM AND SPECIALIZATION ARE NOT FOR FREE...

Frequency limit
=> parallelism
Energy efficiency

=>» heterogeneity
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PARALLELISM AND SPECIALIZATION ARE NOT FOR FREE...

Frequency limit
=> parallelism Ease of
Energy efficiency programming

=>» heterogeneity
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MANAGING COMPLEXITY....

“Nontrivial software written with threads,
semaphore, and mutexes is incomprehensible by
humans”

Edward A. Lee

The future of embedded software
ARTEMIS 2006

Parallelism, multi-cores, heterogeneity,
distributed computing, seems to be too
complex for humans ?
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MANAGING COMPLEXITY

Cognitive solutions for complex

computing systems:

« Using Al and optimization
techniques for computing
systems

« Creating new hardware
« Generating code
* Optimizing systems

« Similar to Generative design

for mechanical engineering

“And that's why we need a computer.”



USING Al FOR MAKING COMPUTING SYSTEMS: “GENERATIVE DESIGN” APPROACH

The user only states desired goals and constraints
-> The complexity wall might prevent explaining the solution

“Autodesk”

Motorcycle swingarm: the piece that hinges the rear wheel to the bike’s frame | 81




r EXAMPLE: DESIGN SPACE EXPLORATION FOR
ol DESIGN MULTI-CORE PROCESSORS' (2010)

Calculated Performance versus Area

Ne-XVP project — Follow-up of the
TriMedia VLIW

( )

1,105,747,200 heterogeneous multicores
in the design space

2 millions years to evaluate all design
points

“Al inspired” techniques allowed to
reduce the induction time to only few
days

. Performance (1/second)

=> x16 performance increase & ¢ : * Area (mm?

" M. Duranton et all., “Rapid Technology-Aware Design Space Exploration for Embedded HeterogeneousMultiprocessors” in Processor and
System-on-Chip Simulation, Ed. R. Leupers, 2010
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https://en.wikipedia.org/wiki/Ne-XVP

THIS IS ALSO VALID FOR SOFTWARE: AUTOML AND
OTHER PROGRAM GENERATORS

contributed articles

Avoid premature commitment, seek design
alternatives, and automatically generate

performance-optimized software,

[ 8y woLoer n. woos

Programming

y
Optimization

TO OMMEUBCATONS 0F THE MW | SSIRARY LT VLS A0 T

Communications of the ACM, 55(2), pp. 70-80, February 2012
www.prog-by-opt.net

Microsoft’s Al is learning to write
code by itself, not steal it

Written by Dave Gershgorn

What if instead of searching through menus within programs like Microsoft Excel,
our computers could understand the problem we’re trying to solve and write the
software to solve it? It’s a hyper-futuristic idea, but one that has recently seen
progress from Microsoft Research and the University of Cambridge.

In a November 2016 paper (pdf), which gained notoriety after being accepted into
one of the year’s largest artificial intelligence conferences, Microsoft and
Cambridge built an algorithm capable of writing code that would solve simple
math problems. The algorithm, named DeepCoder, would be able to augment its
own ability by also looking at potential combinations of code for how a problem
could be solved. (It’s a bit complicated; we’ll break it down later.) However, this
doesn’t mean it steals code, or copy and pastes it from existing software, or
searches the internet for solutions, as some reports have claimed.
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PROGRAMMING 2.0: LET THE COMPUTER DO THE JOB

Describing what the program should accomplish, rather than describing how to
accomplish it

* For example, describe the concurrency of an application, not how to parallelize the code for it.
* (Good) compilers know better about architecture than humans, they are better at optimizing code...

Declarative Programming

Imperative Declarative
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CONCLUSION
e



CONCLUSION: WE LIVE AN EXCITING TIME!
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Thank you for your attention e e S

Special thank you to Denis Dutoit, Christian Gamrat,
Carlo Reita for their slides | borrowed. @NATEC digiteo




