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This presentation is based on the work done in ETP4HPC and in HiPEAC

https://www.etp4hpc.eu/pujades/files/Blueprint%20document_20190429.pdf https://www.hipeac.net/roadmap
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1) Evolution of application scope: the continuum
2) Hardware heterogeneity and orchestration
3) Software?

Outline
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1) Evolution of application scope: the continuum
1) From smart sensors to HPC
2) Artificial Intelligence (Deep Learning) loads
3) Implications for the architecture

2) Hardware heterogeneity and orchestration
3) Software?

Outline



FROM SMART SENSORS TO HPC
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New 
services

Smart sensors

Internet of 
Things

Big Data

Cloud / HPC

Data Analytics / 
Cognitive 
computing

Mainstream “business” model
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ECONOMICAL DRIVE OF 
CONNECTED THINGS: 

BETTER EFFICIENCY IN 
RESOURCES AND ENERGY
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New 
services

Smart sensors

Internet of 
Things

Big Data

Cloud / HPC

Data Analytics / 
Cognitive 
computing

Physical 
Systems

Transforming data into information as early as possible

Cyber Physical 
Entanglement

CPS + AI:
Processing,

Understanding
as soon as 

possible

HIGH PERFORMANCE SYSTEMS IN THE LOOP

ENABLING EDGE INTELLIGENCE

True collaboration 
between edge devices 
and the HPC/cloud
➪ creating a 

continuum

Enabling Intelligent 
data processing at 

the edge:
Fog computing

Edge computing
Stream analytics

Fast data…

aka Cognitive CPS
aka Intelligent Embedded Systems
aka Autonomous CPS (ACPS)

Reduce latency
Safety requirements
Reduce bandwidth
Privacy constraints
Reduce energy
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SRA-4: THE INCREASING INTERPLAY OF SIMULATION, AI, IOT AND ANALYTICS13

(*) http://www.europarl.europa.eu/RegData/etudes/
BRIE/2018/628231/EPRS_BRI(2018)628231_EN.pdf

Upstream technologies

From ETP4HPC

http://www.europarl.europa.eu/RegData/etudes/
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Simulation Data

Machine
Learning

Interacting with the world:
Intertwined with 
CPS requirements
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Simulation Data

Machine
Learning

3 PILLARDS OF FUTURE HPC

Interacting with the world:
Intertwined with 
CPS requirements



ARTIFICIAL INTELLIGENCE (DEEP LEARNING) LOADS
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The Hype cycle - 2018

• Deep Learning
• Virtual assistants
• DNN Asics
• Autonomous Driving
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ONE ASPECT OF AI: PERSONAL ASSISTANTS....

Google Assistant
(1 billon devices)

Apple Siri
(+500 millions devices)

Amazon Alexa
(+100 millions devices)

Baidu’s DuerOS
(+100 millions devices)
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DEEP LEARNING AND VOICE RECOGNITION
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" The need for TPUs really emerged about six years ago, when 
we started using computationally expensive deep learning 
models in more and more places throughout our products. The 
computational expense of using these models had us worried. 
If we considered a scenario where people use Google voice 
search for just three minutes a day and we ran deep neural 
nets for our speech recognition system on the processing units 
we were using, we would have had to double the number of 
Google data centers!" 

[https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html]

DEEP LEARNING AND VOICE RECOGNITION
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GOOGLE’S CUSTOMIZED HARDWARE…
… required to increase energy efficiency 

with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : training and inference in a 180 teraflops16 (180 x 1012 Flops16) board
(over 200W per TPU2 chip according to the size of the heat sink)
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… required to increase energy efficiency 
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : 11.5 petaflops16 of machine learning number crunching 
(and guessing about 400+ KW…, 100+ GFlops16/W)

Peta = 1015 = million of milliardFrom Google

GOOGLE’S CUSTOMIZED TPU (V2) HARDWARE…
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From https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/

GOOGLE’S CUSTOMIZED TPU (V3) HARDWARE…
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ALPHAGO ZERO: SELF-PLAYING TO 
LEARN

From doi:10.1038/nature24270 (Received 07 April 2017)
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ALPHAZERO FROM DEEP MIND : COMPUTING RESOURCES

Peta = 1015 = million of milliard
From Google Deepmind

X 5000 = 200 KW (for the boards only)*

* https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

X 40 days…
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EXPONENTIAL INCREASE OF COMPUTING POWER FOR AI 
TRAINING

* https://blog.openai.com/ai-and-compute/

“Since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially 
with a 3.5 month-doubling time… 

(by comparison, Moore’s Law had an 18-month doubling period)*”

Peta= 1015
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From Paul Messina, Argonne National Laboratory

ALWAYS MORE COMPUTING RESOURCES

HPC: exaflop
(1018 flops)
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AUTO-ML
There is no formal approach to set all the parameters 
(hyperparameters) of Deep Neural networks:
• Topology of the network (number of layers, composition of layers, 

kernel size, number of neurons, …)
• Parameters for the learning algorithm : batch size, momentum, 

normalization, learning rate, etc..
➪ several 10’s of parameters to choose for the expert 

Auto-ML uses optimization approaches to select a “good” set of 
parameters “automagically”
• It is generally very computing expansive (configuration space 

search)
• Use clever algorithms to avoid exploring all the configuration space

More details for example in http://automl.org

From Forbes



CHARACTERIZATION OF DEEP LEARNING LOADS
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MACHINE LEARNING
(DEEP LEARNING)
LEARNING PHASE

Learning phase

Labelled data set

Specialist

• Human defines the learning 
data set, not the algorithm 

• Large set of input data for 
learning phase

• Low precision floating point
• Large number of operations
• (Stochastic) gradient descent
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MACHINE LEARNING
(DEEP LEARNING)

INFERENCE PHASE

Inference phase

• Low precision arithmetic
• Medium to low number of 

operations
• Co-location computing and 

storage (“computing in 
memory”)

• Should satisfy the application 
non-functional requirements

Environment

But for large number of inferences (users)
-> more cloud like structure, high throughput
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REINFORCEMENT LEARNING: 

Actions

Observations

Respond to action

Rewards

Goal

Environment

Agent

Learns to maximize rewards

DYNAMIC PROGRAMMING + DEEP LEARNING
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REINFORCEMENT LEARNING: 
DYNAMIC PROGRAMMING + DEEP LEARNING

Goal

Actions

Observations

Rewards

Respond to action

Environment

Agent

Learns to maximize rewards

• Mixed precision arithmetic
• Very high number of operations
• Large internal data manipulation
• Mainly co-location computing and 

storage (“computing in memory”)
• High level of parallelism
• Minimization of energy functions
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REINFORCEMENT LEARNING: 
DYNAMIC PROGRAMMING + DEEP LEARNING

Goal

Actions

Observations

Rewards

Respond to action

Agent

Learns to maximize rewards

Simulation
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COMPLEMENTARITY OF SIMULATION AND IA TECHNIQUES

IA
Simulation

Simulation for improving IA

IA for improving simulations

Converged architecture:
- From float16 to double precision
- Increasing memory per node
- Flexible partitioning
- Increase ratio communication / 

compute or compute in memory
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1) Evolution of application scope: the continuum
2) Hardware heterogeneity and orchestration
3) Software?

Outline
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1) Evolution of application scope: the continuum
2) Hardware heterogeneity and orchestration

1) End of Dennard’s scaling
2) Heterogeneous accelerators
3) Heterogeneous integration

3) Software?

Outline



END OF DENNARD’S SCALING
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WHAT WILL BE THE NEXT TECHNOLOGY?

And after CMOS?
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Exponential increase of performances in 33 years

Summit – 2018 
200 PFLOPS (2x1017 FLOPS)

Cray 2 – 1985 
2 GFLOPS (2x109 FLOPS)

X 100 000 000
in 33 years

Production car of 1985
Lamborghini Countach 5000QV
Max speed 300 Km/h

Star Trek Enterprise 
Year: about 2290
27 times the speed of light?

To infinity and beyond…
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THE END OF MOORE’S LAW

Parameter
(scale factor = a)

Classic
Scaling

Current
Scaling

Dimensions 1/a 1/a

Voltage 1/a 1

Current 1/a 1/a

Capacitance 1/a >1/a

Power/Circuit 1/a2 1/a

Power Density 1 a
Delay/Circuit 1/a ~1

Source: Krisztián Flautner �From niche to mainstream: can critical systems make the transition?�

Everything was 
easy:

• Wait for the next 
technology node

• Increase 
frequency

• Decrease Vdd
Þ Similar increase 

of sequential 
performance

Þ No need to 
recompile (except 

if architectural 
improvements)

DENNARD SCALING
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22FD

28nm

14nm

10nm

7nm

5nm

Next Gen

FinFET

25nm TBOX

20nm LG ISPD SiC
RSD

Si channel

2017

2019

25nm TBOX

20nm LG ISPD SiC
RSD

Si channel

12FD
FDSOI

Non planar / trigate / stacked Nanowires

Technology evolution

Ultra Thin Oxide

Fully Depleted Silicon 
on Insulator (FDSOI) 
Transistor

V back biasing
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22FD

28nm

14nm

10nm

7nm

5nm

Next Gen

Mechanical switches

H
yb

rid
 

lo
gi

c Steep slope devices

Si Quantum bits

Disruptive scaling

Monolithic 3D  for 3D VLSI

FinFET

Alternative to scaling 
and diversification

25nm TBOX

20nm LG ISPD SiC
RSD

Si channel

2017

2019

25nm TBOX

20nm LG ISPD SiC
RSD

Si channel

12FD

Silicon Quantum bits

FDSOI

Non planar / trigate / stacked Nanowires

Technology evolution



HETEROGENEOUS ACCELERATORS
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From “Total Consumer Power Consumption Forecast”, Anders S.G. Andrae, October 2017

The problem:
IT projected to challenge future electricity 

supply Exponential power 
consumption
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SPECIALIZATION LEADS TO MORE EFFICIENCY EFFICIENCY

Source from Bill Dally (nVidia) « Challenges for Future Computing Systems » 
HiPEAC conference 2015

Type of device Energy / 
Operation

CPU 1690 pJ
GPU 140 pJ

Fixed function 10 pJ
FPGA with HLS

“software programming
space and not only time”
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About 
15 MW

TODAY’S HPC

• 200 peak petaflops for high-performance computing workloads
• 3.3 peak exaops for emerging AI workloads
• 4,608 compute nodes, each containing two 22-core IBM Power9 processors 

and six Nvidia Tesla V100 GPUs
• Interconnected with dual-rail Mellanox EDR 100Gb/s InfiniBand.

ARE HETEREGENEOUS
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TOP500 #1 & #2: NVIDIA TESLA V100 GPU + IBM POWER9 CPU

Heterogeneous integration driven by compute energy efficiency<

Source NVIDIA

Source IBM

• Compute performance from GPU

From Denis Dutoit
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• Performance target: 1.5 exaflops; 40 MW; 37 GFLOPS/W

• Compute node: x1 CPU + x4 GPU + coherent fabric

AMD'S EPYC AND RADEON TO POWER EXASCALE SUPERCOMPUTER

Heterogeneous integration requires high-bandwidth, low-latency connection<

https://www.amd.com/es/products/frontier

May, 2019

From Denis Dutoit
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52ND EDITION OF THE TOP500 LIST (NOVEMBER 11TH, 2018)

Yes

Yes

No

Yes

Yes

Heterogeneous 
integration ?
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IBM 
TrueNorth

Intel Loihi DynapSEL

Technology 28nm CMOS 14 nm CMOS 28 nm FDSOI
Supply Voltage 0.7-1.05 V 0.5-1.25 V 0.73-1 V
Design Type Digital Digital Mixed-signal 
Neurons per core 256 Max 1k 256
Core Area 0.094 mm2 0.4 mm2 0.36 mm2

Computation Time multiplexing Time multiplexing Parallel processing
Fan In/Out 256/256 16/4k 2k/8k
On-line Learning No Programmable STDP
Synaptic Operation / Second / 
Watt

46 GSOPS/W 300 GSOPS/W

Energy per synaptic operation 26 pJ 23.6 pJ <2 pJ

GOING NEURO-INSPIRED: “SPIKING” NEURAL NETWORKS
Using another way of coding information…not using bits
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Maurand et al, 
Nature Com., 
Jul. 2016.

FUSING PARADIGMS AT HARDWARE LEVEL 

Coordination Engine
Von Neumann style
CMOSTechnology

binary data

Graphical
Engine

Decision
Engine

Neuro
Engine

Quantum
Engine

Semantical
Engine

Numerical
Engine

CMOS Substrate

Neuro
engine

Quantum
engine

Graphics
engine

Physical and logical interface layer

Numerical
Engine

At the hardware level, the good old Von Neumann/ CMOS partnership can act as a computing substrate, 
or orchestrator of various accelerators/technologies 

• Acting as coordination / communication node
• Allowing Hardware / Software integration

D. Roclin et al, IEEE 
NanoArch, 2014.

Qubits on Silicon

NVM Synapses 
on Silicon

Slide from Christian Gamrat
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NON VOLATILE MEMORIES

PCM
GST
GeTe
GST + HfO2

CBRAM
Ag / GeS2

OXRAM

TiN/HfO2/Ti/TiN
Thermal 
effect Electrochemical

effect
Electronic effect oxygen vacancies

MRAM Magnetic effect
• Can change the structure of 

memory hierarchy?
+ 64/128 addressing scheme
Þ Do we still need files?
Þ Direct access of objects
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3-Cache 
replacement

CPU CPU

NVM

Disk/SSD

DRAM

L1 $ L1 $

2-Main 
memory 

replacement

NVM

CPU CPU

L1 $ L1 $

L2/L3 $

Disk/SSD

DRAM

1-Smart SSDs

CPU CPU

L1 $ L1 $

L2/L3 $

Disk/SSD

DRAM

NVM

NEW ARCHITECTURE PARADIGMS WITH NVM

Execution time
Memory stalls

Compute

Balanced architectures

Data movement energy reduced.
Non-Volatile Memories invade logic.

SoC

Ext. Mem.

I/O

DRAM

CPU CPU

L1 $ L1 $

L2/L3 $

Current 
system

Disk/SSD

75 %
Memory bound 

architecture

25 %

NVM

Other nodes

4-Post-Exascale 
Architectures

Disruptive 
architecture

100 %
In-Memory 
Computing

From Denis Dutoit
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SOLVING THE ENERGY CHALLENGE: COST OF MOVING DATA

Source: Bill Dally, « To ExaScale and Beyond »
www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf 

Avoiding data movement:
Computing in/near memory

x800 more!
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PROCESSOR ARCHITECTURE EVOLUTION

In Memory Computing,

Neuromorphic Computing.

Data Centric 

Interconnect

Moore’s law slow-down

Disruptive
Architecture for 

data management

Memory 

invades 

logic

CPU

Cache

Memory

Bus

NIC

(Network

InterConnect)

Mono-core 
architecture for 

single thread 

performance

~2006

End of Dennard’s scaling

NoC + LLC

Cache Cache

Memory

CacheCache

Many-core 
architecture for 

parallelism

Memory

NIC

~2016

Close 

Mem.
C

o
h
e
r
e
n
t L

in
k

Close 

Mem

Close 

Mem

Close 

Mem

Far 

Mem.
NIC

Generic processing

HW accelerator

Heterogeneous
architecture for 

energy efficiency 

~2026…

Quantum 
Computing

From Denis Dutoit



HETEROGENEOUS INTEGRATION
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2.5 stacking with chiplets and interposers
for heterogeneous integration 
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FROM ADVANCED PACKAGING TECHNOLOGIES …. 
… TO CHIPLETS

Advanced Integration

Multi-Chip-Module

Source: AMD EPYC 7260, 4-chiplet chip

Interconnect density: 100µm x 100µm

SiP

System-in-Package

Source: A
MD Fiji G

PU

Source: Micron High-Bandwidth-Memory

Interconnect 
density: 10µm x 

10µm

Interconnect 
density: 10µm x 

10µm

Die stacking
3D 2.5D

3D Integrated-Circuit (3D IC)

Source: DARPA

Source: LETI

Source: GeorgiaTech

CHIPLET 
partitioning

From Denis Dutoit
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SOME RECENT ANNOUCEMENTS
… ON CHIPLETS & ACTIVE INTERPOSERS

https://www.engadget.com/2018/12/12/intel-foverus-3d-chip/?yptr=yahoo&guccounter=2

FO
V

E
R

O
S

 T
ec

hn
ol

og
y

… and INTEL

https://spectrum.ieee.org/tech-talk/semiconductors/design/amd-tackles-coming-
chiplet-revolution-with-new-chip-network-scheme

[J. Yin et al., “Modular Routing Design for 
Chiplet-based Systems”, ISCA’2018]

From AMD ….

From Denis Dutoit
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EUROPEAN PROCESSOR INITIATIVE

Copyright © European Processor Initiative 2019.



| 69

ARM MPPA

eFPGA EPAC

HBM
memories

DDR
memories

PCIe gen5
links

HSL
links

D2D links
to adjacent chiplets

¡ Heterogeneous SoC:
¡ General processing core
¡ EPAC - EPI Accelerator
¡ MPPA - Multi-Purpose Processing 

Array
¡ eFPGA - embedded FPGA

¡ Homogenegous/ 
Heterogeneous 
chiplet

¡ Heterogeneous 
socket

¡ Heterogeneous 
memories

From Denis Dutoit

COMMON PLATFORM FOR MULTI-LEVEL HETEROGENEOUS INTEGRATION
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Electrons:  Easy to create and interface
Attenuation with the distance (Ohm’s law)

Photons: Energy demanding for creation and 
interfacing

Low attenuation with the distance

ELECTRONS VERSUS PHOTONS
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OFF-CHIP PHOTONICS

Off board: AOC, 
optical modules Off chip: Optical I/O Time

S1

Chip B

Chip CO
pt

ic
al

 T
ra

ns
ce

iv
er

Chip D

IC
Si interposer or laminate substrate

Driver / 
TIA

IC

Micro-
pillars

PIC

Fiber
Ferrule

PCB

Photonics: cost in sending information, nearly nothing in transmission
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IN-PACKAGE PHOTONICS

Off board: AOC, 
optical modules Off chip: Optical I/O Optical network

in package

S1

O
pt

ic
al

 T
ra

ns
ce

iv
er

Chip C

Chip A

Chip D

Chip B

RAMComputing 
Cores

Photonic Interposer

Tx/Rx Integr. 
Rx/Tx

Substrate

photo
diode modul

Laser

Through
Silicon Via

RF Cu pillars

Power Power Power Power

Light source

Primary I/O
Cu pillars

Digital Cu pillars
& proximity lines

Thermal Dissipation

Thermal Dissipation

SignalSignal

S2
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è 1Tbps/mm² bandwidth density
è Tight technology integration of

E/O ring modulators within a 3D stack
è Integrated thermal tuning

robust to compute fabric heating

Y. Thonnart & al. ISSCC’2018

CMOS+Si-Photonics
3D stack

Chip-on-board integration

Optical fiber array

[LETI: Y. Thonnart, ISSCC2018]

DEMONSTRATION OF A THERMALLY TUNED WDM ELECTRO-OPTICAL LINK

From Denis Dutoit
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LETI’S SI-PHOTONICS ROADMAP FOR POST-EXASCALE COMPUTING

2019 2021

TSV for CMOS TSV for Si-Pho

WDM link ONoC

E/O Micro rings Thermal tuning

P
a

c
k

a
g

in
g

A
rc

h
it

e
c

tu
re

S
i-

P
h

o
to

n
ic

s

• Target demonstrator è 2021

• 96-core cache-coherent processor

• Generic E/O chiplets

• 8-node optical NoC
• 576 Gbit/s aggregated bandwidth
• 384 microring resonators
• ~10 ns electro-optical latency

From Denis Dutoit



| 75

Photonic

SW tools, benchmarks  and 
design methodologies

High Density 3D

New Memory 
Technologies

Neuromorphic

CoolCubeTM

Heterogeneity & everything close

Si

Si

Cu

SiO2

Si

Si

Cu

SiO2

Neuro chiplet Scaling with FF and 
CoolCubeTM

Active silicon interposer,
High density 3D
Photonic

New 
Memories 
(NVM) close 
to the logic

SW tools, benchmarks
and design methodologies energy aware

POTENTIAL SOLUTION FOR POST EXASCALE BOARD

Time

From Denis Dutoit
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1) Evolution of application scope: the continuum
2) Hardware heterogeneity and orchestration
3) Software?

Outline
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PARALLELISM AND SPECIALIZATION ARE NOT FOR FREE…

Frequency limit   
è parallelism

Energy efficiency 
è heterogeneity

Ease of 
programming
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Energy efficiency 
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MANAGING COMPLEXITY….

“Nontrivial software written with threads, 
semaphore, and mutexes is incomprehensible by 
humans”

Edward A. Lee
The future of embedded software

ARTEMIS 2006

Parallelism, multi-cores, heterogeneity, 
distributed computing,  seems to be too 
complex for humans ?



MANAGING COMPLEXITY
Cognitive solutions for complex 
computing systems:
• Using AI and optimization 

techniques for computing 
systems
• Creating new hardware
• Generating code
• Optimizing systems

• Similar to Generative design
for mechanical engineering
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USING AI FOR MAKING COMPUTING SYSTEMS:  “GENERATIVE DESIGN” APPROACH 

Motorcycle swingarm: the piece that hinges the rear wheel to the bike’s frame

The user only states desired goals and constraints
-> The complexity wall might prevent explaining the solution 

“Autodesk”
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• Ne-XVP project – Follow-up of the 
TriMedia VLIW 
(https://en.wikipedia.org/wiki/Ne-XVP )

• 1,105,747,200 heterogeneous multicores 
in the design space

• 2 millions years to evaluate all design 
points

• “AI inspired” techniques allowed to 
reduce the induction time to only few 
days

=> x16 performance increase

EXAMPLE: DESIGN SPACE EXPLORATION FOR 
DESIGN MULTI-CORE PROCESSORS1 (2010)

1 M. Duranton et all., “Rapid Technology-Aware Design Space Exploration for Embedded  HeterogeneousMultiprocessors” in Processor and 
System-on-Chip Simulation, Ed. R. Leupers, 2010 

https://en.wikipedia.org/wiki/Ne-XVP
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THIS IS ALSO VALID FOR SOFTWARE: AUTOML AND 
OTHER PROGRAM GENERATORS
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Describing what the program should accomplish, rather than describing how to 
accomplish it

• For example, describe the concurrency of an application, not how to parallelize the code for it.
• (Good) compilers know better about architecture than humans, they are better at optimizing code…

PROGRAMMING 2.0: LET THE COMPUTER DO THE JOB



CONCLUSION
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CONCLUSION: WE LIVE AN EXCITING TIME!

“The best way to predict the future is to invent it.”
Alan Kay
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