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A short history of Optical Processing of Information
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all the way to Neural Networks
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Rebooting Optical Computing: the Al era
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e “Tsunami of data’ could consume one fifth of
global electricity by 2025
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- World is running out computer power, ge
warns Microsoft boss Nadella '

" ALGORITHMS

Optimizer
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Guardian Environment Network
‘Tsunami of data’ could consume one fifth of
global electricity by 2025

Fig. A8. Total energy of computing.




Computing these
days

o

.. there is massively more information sent
at shorter distances

so much so that

most energy dissipation is in shorter links and
in

interconnects inside machines...”

David Miller, Stanford EE
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Von Neumann Architecture
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Computing these days

It’s all about accessing the memory for your computations !

PASCAL VOLTA TENSOR CORES

NVIDIA" NVLink
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LightOn: The Founding Team
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http://nuit-blanche.blogspot.com
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Compressive Sensing confidentil &

Can one recover X fromy ?

f . ):( YES with tractable algorithms
| o for right values of N, M, K
: -5
Max1 1 K-sparse
.

Nx1
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* Signals can be sampled at the level of their information content

* Random Projections are very good for sensing at low data rate

* Strong theoretical background and large empirical evidence
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Light transport in diffusive media e

Origin: light is scattered
by inhomogeneities




Light transport in diffusive media
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Light transport in diffusive media e

Young'’s slit experiment: N\ | I |

two wave interference | =

, | =
Fringes i ‘ |
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Light transport in diffusive media e

Credit: E. Bossy (UGA), SimSonic.
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Scattering: a coherent process et

laser « Speckle »

laser

Modulated beam
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laser

Videoprojector chip

CMOS camera
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Scattering: a coherent process et

B (hll hio ... th\ |
Discrete B h2 1 hag . haw B Discrete
input vector | E | output vector
b \hM,l hats .. hary ) a (speckle intensity)
B Random transmission matrix B

X H y=|HxJ]

Videoprojector chip

CMOS camera

Popoff et al. Nat. Commun. 1:81 doi: 10.1038/ncomms1078 (2010)



G:DLightOn
The transmission matrix Corertar

Scattering materials are « super-lenses »

Focusing ++

Imaging ++
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H s
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Popoff et al. Phys. Rev. Lett. 104,100601 (2010) / Liutkus et al., Scientific Reports 4, 5552 (2014)
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Lessons from Light Transport in Diffusing Media

* Scattering preserves the information content: it is possible to « see »

through a thick layer of scattering material

 Scattering optimally mixes information, evenly spread on output pixels:

* just like a Random Projection

* just like in Compressive Sensing

* Matrix-vector multiplication, followed by non-linearity: sounds familiar ?
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Random Projections in Machine Learning

 Random Projections act as distance-preserving point cloud embeddings

Johnson-Lindenstrauss Lemma (1984)
Lemma For any 0 < € < 1 and any interger n let k be a po sitive interger such that
24
k 2 m l()g n

then for any set A of n points € R4 there exists a map f: R4 — R* such that for all xiz; €A

(1= )|z — z;]1® < ||1f(@:) — F@H)I? < A +€)||zi — z;]2

* Supervised Learning

* Unsupervised Learning: Randomized PCA, etc...
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Lessons from Random Projections in Machine Learning

 Random projections act as dimensionality reduction or expansion

* They can also be seen as a dense layer in a Deep Learning model

* High dimensions reduce sensitivity to hyper-parameters

e Calibration-free

Step 1 Random Proj. Step 2 (Expansion) Step 3 (WTA)
Flv olfaction Antennae lc:ube Sparse, binary Mushroom body APL neuron
: 50 glomeru li Samples 6 2000 Kenyon cells top 5%
) Olfactory bulb Dense, weak Piriform cortex Layer 2A
Monsc: olfaction 1000 glomeruli Samples all 100K semi-lunar cells top 10%
Pre-cerebellar Sparse, binary Granule cell layer Golgi cells
Rat cerebellum nuclei Samples 4 100M granule cells top 10-20%
Rat hippocampus Entorhinlal COrtex Unknown Dentate gyrus Hilar cells
30K grid cells 1.2M granule cells top 2%

The steps used in the fly olfactory circuit and their potential analogs in vertebrate brain regions.
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At D LightOn , we bring Light to Al ...

... using diffusive media as memories !
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Harvesting Universal Compression from Nature

, Data out
Data In

Result: a universal
compression function

Credit: Emmanuel Bossy (Université Grenoble Alpes), SimSonic Software
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This performs Random Projections in the analog domain
y = |Hx|?

with H a complex random iid matrix

EXTRA-LARGE & SUPER-FAST

H of size higher than kHz operation
10° x 108 —103 such

(TBs of memory) multiplies / s

Equivalent 10%° operations / s : You would
need a Peta-scale computer to do the same
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Spring 2017 - The first « OPU »: Optical Processing Unit
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CPU | GPU

LightOn Cloud
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Some typical use cases
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Fast Transfer Learning
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Fast Transfer Learning
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Fast Transfer Lea rning oot ieany
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NEWMA: a new method for scalable model-free online change-point detection,
Nicolas Keriven, Damien Garreau, lacopo Poli, https://arxiv.org/abs/1805.08061

Confidential — do not distribute without prior written permission.
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https://arxiv.org/abs/1805.08061
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Recommender Systems

Recommender Systems shape our lives at scale !
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Recommender Systems
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Figure 2: Detail of distribution of leading submissions indicating possible techniques

The Netflix Prize: Crowdsourcing to Improve DVD Recommendations, https://digit.hbs.org/submission/the-netflix-prize-

crowdsourcing-to-improve-dvd-recommendations/
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Recommender Systems

Data Singular Value Decomposition

Cornell University

hrXiv.org > math > arXiv:0909.4061 Search or Ar
SVD Mathematics > Numerical Analysi
— Finding structure with randomness: Probabilistic algorithms

for constructing approximate matrix decompositions

Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp
(Submitted on 22 Sep 2009 (v1), last revised 14 Dec 2010 (this version, v2))

Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-
revealing QR decomposition, play a central role in data analysis and scientific computing. This work
surveys and extends recent research which demonstrates that randomization offers a powerful tool for
performing low-rank matrix approximation. These techniques exploit modern computational architectures
more fully than classical methods and open the possibility of dealing with truly massive data sets.
This paper presents a modular framework for constructing randomized algorithms that compute partial
matrix decompositions. These methods use random sampling to identify a subspace that captures most of
C 0 m p re S S re C 0 Ve r' | e ft the action of a matrix. The input matrix is then compressed-—either explicitly or implicitly--to this subspace.
and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many
cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These

d ata S i n g u I ar Vecto rS claims are supported by extensive numerical experiments and a detailed error analysis.

Subjects: Numerical Analysis (math.NA): Probability (math.PR)
Journal reference: SIAM Rev., Survey and Review section, Vol. 53, num. 2, pp. 217-288, June 2011
arXiv:0909.4061 [math.NA]

R a n d O m i Ze d S V D . crese (or arXiv:0909.4061v2 [math.NA] for this version)
D —

* Randomized Matrix Decompositions using R, Aug 2016, N. Benjamin

Erichson, Sergey Voronin, Steven L. Brunton, J. Nathan Kutz S
Confidential LightOn - Confidentiel



* Movielens with 20 millions records (size 26.000 x 140.000) with 0.5%
non-zero entries

e At the moment, our OPU is competitive with Facebook-PCA approach
(efficient randomized SVD CPU implementation)

Confidential LightOn - Confidentiel
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One statement and one question

e RO ‘“}V %) ‘}% Optical Computing is already at scale for

2V E> the data tsunami

Main memory

Will Von Neumann architectures Storage
stay prevalent in the Al era ?
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LightOn Cloud

e Available for beta-users Q1 2019 (VMs via OpenStack)

e Platform-as-a-Service Integration within popular ML frameworks
(Python-based: Scikit-Learn, TensorFlow to be supported ...)

Sign-up: lighton.io
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Using Light to change the Future of Computing
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