Vers la programmation des

algorithmes quantiques

Benoit Valiron
CentraleSupélec — LRI, Univ. Paris Saclay

4 avril 2019

Big Picture: Quantum Computation

What COULD quantum algorithms be good for?

e factoring
— for breaking modern cryptography

e simulating quantum systems
— for more efficient molecule distillation procedure

e solving linear systems
— for high-performance computing

e solving optimization problems
— for big learning

e ... more than 300 algorithms:
http://math.nist.gov/quantum/zoo/

Big Picture: Quantum Computation

Dichotomy between

e Quantum algorithms as theoretical tools for complexity analysis

e Quantum algorithms as practical tools for concrete problems

Challenges, assuming that a physical machine is available
e Designing the right computational model
e Moving from mathematical representation to code
e Resource estimation, optimization
e Compilation and low-level representation

e Debugging/unit testing hard : code analysis and verification

= W N

.

Plan

Computational Model
Internals of Algorithms
Coding Quantum Algorithms
A Language: Quipper
Example

Discussion

= W N

.

Plan

Computational Model
Internals of Algorithms
Coding Quantum Algorithms
A Language: Quipper
Example

Discussion

Computational Model

Classical unit = regular computer
Communicates with the coprocessor

V%

Quantum unit = blackbox
Contains a quantum memory

Getting faster algorithms for conventional problems

Computational Model

A quantum memory with n quantum bits is a complex combination of
strings of n bits. E.g. for n = 3:

ap - 000
aq - 001
ag - 010
a3 - 011
ay - 100
as - 101
ag - 110
a7 - 111

+ 4+ + + 4+ +

with |aol? + |eu |* + |az]? + |as|? + |au]® + [as]? + |ae|® + [ar[? = 1.

(alike probabilities with complex numbers. . .)

Computational Model

The operation one can perform on the memory are of three kinds:

1. Initialization/creation of a new quantum bit in a given state:

(7)) - 00 Ck()‘OOO

+ a7 01 + «p:-010
—

+ Q9 10 + 9 - 100

+ a3~ 11 + a3 110

Computational Model

The operation one can perform on the memory are of three kinds:

1. Initialization/creation of a new quantum bit in a given state:

) - 00 07y - 001

+ «a1-01 + a1 -011
—

+ a9 10 + «a9-101

+ 043°11 + 043'111

Computational Model

The operation one can perform on the memory are of three kinds:

2. Measurement. Measuring first qubit:

(

Q- 00
an - 00 (prob. |ag|* + [as]?)

0 + Q- 01

+ a7 01
— <
+ Q9 - 10

. a9 - 10
Toasn (prob. |az|? + |az[?)

+ a3 11

modulo renormalization.

10

Computational Model

The operation one can perform on the memory are of three kinds:

2. Measurement. Measuring second qubit:

(

Q- 00

(prob. |ao|? + |az2/?)
+ o7 01
— <
+ a9 - 10

. aq - 01
Toasn il (prob. |ax | + [as|?)

+ a3 11

modulo renormalization.

11

Computational Model

The operation one can perform on the memory are of three kinds:

3. Unitary operations. Linear maps
® preserving norms,
e preserving orthogonality,
e reversible.

E.g. the N-gate on one quantum bit (flip). On the first qubit:

Cko-OO Cko'lO

+ o701 + o711
—

+ g - 10 + a9 - 00

+ 053'11 + 043'01

12

Computational Model

The operation one can perform on the memory are of three kinds:

3. Unitary operations.

E.g. the Hadamard gate on one quantum bit. Sends

0 — 2.0 4 ¥2.4q

1 — ¥2.0 - ¥2.4q

When applied on the first qubit:

ap - 01 ap- (X201 + 2. 11)
— \/_
+ a1-10 + Ozr(@-OO—TQ-lO)

13

Computational Model

The operation one can perform on the memory are of three kinds:

3. Unitary operations.

E.g. the Hadamard gate on one quantum bit. Sends

0 —» 2.0 4+ ¥2.4

2 2
1 — 2.0 — 2.4
When applied on the first qubit:
&0@'01
ag - 01 + a2 11
—
+ o110 + o ¥2-00
+ %210

14

Computational Model

The operation one can perform on the memory are of three kinds:

3. Unitary operations.

They can create superposition. . .

Y2 .1100
1100 +—
+ Y2.1110
...or remove It
Y2 . 1100
7 — 1100
+ 21110

15

Computational Model

The operation one can perform on the memory are of three kinds:

3. Unitary operations.
They can simulate classical operations:
e Bit-flip (N-gate).
e Tests (Controlled operations). E.g. Controlled-not. Second
qubit is controlling:

(870) - 00 870 - 00 (870) - 00

+ 041'01 -+ Ozl°11 + &3*01
— —_—

+ w910 + a9 -10 + w910

+ ag'll + 043'01 + Oél°11

16

Computational Model

A co-processor with an internal (quantum) memory

e A random access model.

— for each qubit: Alloc/init, unitary operations, measurements
e Specific |/O interface

e Measurement triggers a probablistic side-effect

To note
e Classical data can transparently flow in.

e To act on quantum memory, classical operations have to lifted.
e Local actions on one (or two) qubit(s) at a time

e Limited moving of qubits; no copying

17

Computational Model

Typical execution flow

Program

Runtime

Classical Unit

Stream of
instructions

A/F%dback\

Quantum
Computation

Quantum Unit

18

Computational Model

Stream of instructions
e Series of elementary actions applied on the quantum memory
e Input/Output of actions summarized with a quantum circuit.
e wire = qubit, box = action, time flows left-to-right

()

H

o—
Input < T > Output

O}

S¥

\ /

No “quantum loop” or “conditional escape”.

19

Computational Model

Parameters —
' jto the problem \
k\\ Simple case/

Input values Static circuit —

& 4

Initializing
quantum
memory

Executing
the circuit

New input values Output values

20

Computational Model

Some algorithms follow a simple scheme

Initialize ' Measure
Classical data guanbum Run f;ua:_ntum — quanturm — Reset quantym
) cirout MEmOTyY
1\ memory memory
Others are following a more adaptative scheme:
S THE
Y
\ Y J j"'q-:}_ L Rest of circuit depends

1 11060 on the measure

Beginning of Measure and
Circuit

classical feedback

This is where quantum circuits differ from hardware design.

One cannot draw a quantum circuit once and for all.

21

Computational Model

A sound model of computation:
Interaction with the quantum memory seen as an |/O side effect

Circ a := Empty a
| Write Gate (Circ a)
| Read Wire (Bool -> (Circ a))

e Output: emit gates to the co-processor

e Input: emit a read even to the co-processor, with a call-back
function

Representing circuits
e static circuits: lists of gates

e dynamic circuits: trees of gates.

22

Computational Model

Moral
e Distinction parameter / input
e Circuits might be dynamically generated
e Parameters = govern the shape and size of the circuit

e Model of computation : two side-effects:
— “quantum 1/Q" : state and I/0O

— probability

23

= W N

.

Plan

Computational Model
Internals of Algorithms
Coding Quantum Algorithms
A Language: Quipper
Example

Discussion

24

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives
e Phase estimation.
e Amplitude amplification.

e Quantum walk.

Should come up as a programmable library

25

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

2. Oracles.
e Take a classical function f : Bool™ — Bool™.

e Construct

f: Bool™™™ 5 Bool™™™

(z,y) +— (2,9 f(x))

e Build the unitary Uy acting on n + m qubits computing f.

26

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

2. Oracles, in real life

calcRweights y nx ny 1x 1y k theta phi =
let (xc’,yc’) = edgetoxy y nx ny in
let xc = (xc’-1.0)*1x - ((fromIntegral nx)-1.0)*1x/2.0 in
let yc = (yc’-1.0)*1ly - ((fromIntegral ny)-1.0)*1y/2.0 in
let (xg,yg) = itoxy y nx ny in
if (xg == nx) then
let i = (mkPolar 1y (k*xc*(cos phi)))*(mkPolar 1.0 (k*yc*(sin phi)))*
((sinc (k*1ly*(sin phi)/2.0))+0.0) in
let r = (cos(phi)+k*1x)*((cos (theta - phi))/1x+0.0) in ix*r
else if (xg==2*nx-1) then
let i = (mkPolar 1y (k*xc*cos(phi)))*(mkPolar 1.0 (k*yc*sin(phi)))*
((sinc (k*1ly*sin(phi)/2.0))+0.0) in
let r = (cos(phi)+(- k*1x))*((cos (theta - phi))/1x+0.0) in i*r
else if ((yg==1) and (xg<nx)) then
let i = (mkPolar 1x (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))x*
((sinc (k*1x*(cos phi)/2.0))+0.0) in
let r = ((- sin phi)+k*1ly)*((cos(theta - phi))/1ly+0.0) in i*r
else if (yg==ny) and (xg<nx)) then
let i = (mkPolar 1x (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))x*
((sinc (k*1x*(cos phi)/2.0))+0.0) in
let r = ((- sin phi)+(- k*ly))*((cos(theta - phi)/ly)+0.0) in ix*r
else 0.0+0.0

~

27

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

3. Blocks of loosely-defined low-level circuits.

ai

— W T T wt _
o []
by —— —
g ———
" 7

|0) O—D B—je 24t —D

e This is not a formal specification!
e Notion of “box”
e Size of the circuit depends on parameters

28

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

4. High-level operations on circuit:

e Circuit inversion.

(the circuit needs to be reversible. . .)

e Repetition of the same circuit.

ﬁm

o

<

[aa]

&}

(needs to have the same input and output arity. . .)

e Controlling of circuits

_]

29

> _

<

m

<

m

@]

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

5. Classical processing.
e Generating the circuit. . .
e Computing the input to the circuit.
e Processing classical feedback in the middle of the computation.

e Analyzing the final answer (and possibly starting over).

30

Internals of algorithms

Summary
e Need of automation for oracle generation
e Distinction parameter / input
e Circuits as inputs to other circuits
e Regularity with respect to the size of the input

e Circuit construction:
— Using circuit combinators: Inversion, repetition, control, etc

— Procedural

e Lots of classical processing!

31

= W N

.

Plan

Computational Model
Internals of Algorithms
Coding Quantum Algorithms
A Language: Quipper
Example

Discussion

32

Coding algorithms

A very recent topic
e From complexity analysis to concrete circuits

e No machine yet, but
— Resource analysis
— Optimization

— Verification

e Scalable languages: in the last 5 years
— Python'’s libraries/DSL: Project-Q, QISKit, etc
— Liqui|), Q# (Microsoft)
— Quipper, QWIRE (academic)

33

Coding algorithms

Imperative programming and the quantum 1/O

Quantum |/O: using commands

Measurement: returns a boolean (probabilistically)
If well-behaved, provides high-level circuit operations
Example with Project-Q (Simplified)

def circuit(ql,q2,93):

H | q1
with Control(ql):
X | g2
H | g3
x = Measure | ql
if x:
Y | g2
else:
Z | g2

34

Coding algorithms

Imperative programming and the quantum 1/O

Quantum |/O: using commands

Measurement: returns a boolean (probabilistically)
If well-behaved, provides high-level circuit operations
Example with Project-Q (Simplified)

def circuit(ql,q2,93):

H | q1
with Control(ql):
X | g2
H | g3
x = Measure | ql
if x:
Y | g2
else:
Z | g2

35

Coding algorithms

Functional programming and the quantum [/O
e Monadic approach to encapsulate |/O
e Inside the monad: quantum operations
e Qutside the monad: classical operations and circuit manipulation

e Qubits only live inside the monad

36

Coding algorithms

Dealing with run-time errors

e Imperative-style: Quantum I/O is a memory mapping
— — Type-systems based on separation logic should work

— Hoare logic or Contracts

e Functional-style:
— Non-duplicable quantum data: linear type system

— Dependent-types

37

= W N

.

Plan

Computational Model
Internals of Algorithms
Coding Quantum Algorithms
A Language: Quipper
Example

Discussion

38

A Language: Quipper

Embedded language in Haskell
Logical description of hierarchical circuits

Well-founded monadic semantics. Allow to mix two paradigms
— Procedural : describing low-level circuits
— Declarative : describing high-level operation

Parameter/input distinction
— Parameter : determine the shape of the circuit
— Input : determine what goes in the wires

39

A Language: Quipper

A function in Quipper is a map
A -> Circ B

e Input something of type A

e Output something of type B

e As a side effect, generate a circuit snippet
Or

e Input a value of type A

e Output a “computation” of type Circ B
Families of circuits

e represented with lists, e.g. [Qubit] -> Circ [Qubit]

40

A Language: Quipper

New base type : Qubit = wire
Building blocks
e gqinit :: Bool -> Circ Qubit
e gdiscard :: Qubit -> Circ ()
e hadamard :: Qubit -> Circ Qubit
e hadamard_at :: Qubit -> Circ ()

Composition of functions = composition of circuits

qinit))
Bool —— Circ Qubit

hadamard

Qubit — Circ Qubit

High-level circuit combinators
e controlled :: Circ a -> Qubit -> Circ a

e inverse :: (a -> Circ b) -> b -> Circ a

41

O}

A Language: Quipper
import Quipper

W (Qubit,Qubit) -> Circ (Qubit,Qubit)

w = named_gate "W"

toffoli :: Qubit -> (Qubit,Qubit) -> Circ Qubit
toffoli d (x,y) =

gnot d ‘controlledt x .==. 1 .&&. y .==. 0
a; —— ® °
e}z_at :: Qubit -> Qubit -> Circ () p | w __J L__ W
eiz_at d r =
named_gate_at "eiZ" d ‘controlled‘ r .==. 0 as | . .
, W T T wt
circ :: [(Qubit,Qubit)] -> Qubit -> Circ O 2
circ ws r = do
label (unzip ws,r) (("a","b"),"r")
d <- ginit O T T T Wt
mapM_ w ws bon ——
mapM_ (toffoli d) ws r >
eiz_at d r) b M

mapM_ (toffoli d) (reverse ws)
mapM_ (reverse_generic w) (reverse ws)
return ()

main = print_generic EPS circ (replicate 3 (qubit,qubit)) qubit

42

A Language: Quipper

Result (3 wires):

HH

I W 1*
O W 2%

HE
b

EH
b

o}

N
N
AR
N>
N
N
o
Elai
AR
N>
N
N
AR\
N

43

A Language: Quipper

Result (30 wires):

44

= W N

.

Plan

Computational Model
Internals of Algorithms
Coding Quantum Algorithms
A Language: Quipper
Example

Discussion

45

Concrete example: BWT

Binary Welded Tree Algorithm
T0

1
) %] e Start at entrance, look for exit
9 0 11 2 13 4 15

e Description of the graph:

16 17 8 J19 20 2 2 23 QA 25 p6 27 28 29 0o .31

I : Node
(G : Color x Node — Maybe Node
O : Node — Bool

e Random/Quantum walk

& 0 1 . VAV 4 \es \ s\ ea\so \eo \a1 e\ 63

o N\ N\ M e s e\ e Parameters:

36 3 38 39

% T height of tree; number of steps.

46

Concrete example: BWT

Using Quipper, w/o oracle:

$./bwt -o blackbox -n 5 -s 1 -f PDF

e o —rr—10 10 o —rr—10 T —
e o e o

R

$./bwt -o blackbox -n 300 -s 1 -f PDF

47

Concrete example: BWT

Using Quipper, the oracles:

$./bwt -o orthodox -0 -n 5 -s 1 -f PDF

$ time ./bwt -o template -0 -n 5 -s 1 -f PDF

48

= W N

.

Plan

Computational Model
Internals of Algorithms
Coding Quantum Algorithms
A Language: Quipper
Example

Discussion

49

Discussion

e Big-O and concrete resource estimation

e Towards program analysis

50

Big-O: Case of the QLS algorithm

Quantum Linear System

Considering a vector b and the system
A-Z=h,

compute the value of (X |7) for some vector 7.

Practical situation: the matrix A corresponds to the finite-element
approximation of the scattering problem.

(arXiv:1505.06552, based on Clader et al, 2013)

51

Big-O: Case of the QLS algorithm

Three oracles:

e for 7 and for b: input an index, output (the representation of) a
complex number

e for A: input two indices, output also a complex number

Many quantum primitives
e Amplitude estimation
e Phase estimation
e Amplitude amplification

e Hamiltonian simulation

In Quipper
e ~ 3000 lines of code

52

Big-O: Case of the QLS algorithm

The parameters are

k. condition number (large) d: sparseness of the matrix

N': size of the matrix (large) €: desired max error (small)

In the litterature, the number of gates:
Harrow et al (2009) O(k%d?log(N)/e)
Clader et al (2013) O(rd*log(N)/€?)

arXiv:1505.06552: k = 10%, d =7, N = 332,020, 680, € = 10~2.
The big-O: ~ 1012

53

Big-O: Case of the QLS algorithm

The parameters are

k. condition number (large) d: sparseness of the matrix

N': size of the matrix (large) €: desired max error (small)

In the litterature, the number of gates:
Harrow et al (2009) O(k%d?log(N)/e)
Clader et al (2013) O(rd*log(N)/€?)

arXiv:1505.06552: k = 10%, d =7, N = 332,020, 680, € = 10~2.
The big-O: ~ 1012

Careful counting: v 1029

54

Towards tools for program analysis

One cannot “read” the quantum memory
e Testing / debugging expensive
e Probabilistic model
e \What does it mean to have a “correct” implementation?

Emulation of circuits
e Only for “small” instances
e Taming the testing problem

e For experimentation of error models

Formal methods
e [ype systems: capture errors at compile-times
e Static analyis tools:
analyze and resource estimation for quantum programs
e Proof assistants: verify code transformation and optimization

55

