
LES CHALLENGES POSÉS PAR LES SYSTÈMES DE CALCUL POUR LES 
APPLICATIONS CYBER-PHYSIQUES COGNITIVES 

Marc Duranton 
CEA Fellow 

Commissariat à l’énergie atomique  et aux énergies alternatives

Séminaire Aristote : Réinventer l’informatique 
6 décembre  2018



!2

“The best way to predict the future is to invent it.”  

Alan Kay
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LOOKING BACK… 1 COMPUTER FOR THE WHOLE PLANET 

ENIAC (Electronic Numerical Integrator And Computer), 
built between 1943 and 1945. 
ENIAC contained 20,000 vacuum tubes, 
7200 crystal diodes, 1500 relays. It weighed more than 27 t, 
was roughly 2.4 m × 0.9 m × 30 m in size, occupied 167 m2  
and consumed 150 kW of electricity.

EDVAC was delivered in 1949.Functionally, 
EDVAC was a binary serial computer with 
automatic addition, subtraction, multiplication, 
programmed division and automatic checking 
with an ultrasonic serial memory capacity of 
1,000 44-bit words. EDVAC's average addition 
time was 864 microseconds and its average 
multiplication time was 2,900 microseconds.

From Wikipedia
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LOOKING BACK…  1 COMPUTER PER (MAJOR) COUNTRY

"I think there is a world market  
for maybe five computers."  

Thomas Watson, president of IBM, 1943 
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LOOKING BACK… 1 COMPUTER PER HOUSE

The Altair 8800 by MITS – 1974 - Intel 8080 CPU. 
"1024 word" memory board populated with 256 bytes.  
The BASIC language was announced in July 1975  
and it required one or two 4096 word memory boards  

"There is no reason anyone would  
want a computer in their home."  

Ken Olsen, founder of Digital Equipment Corporation, 1977 

IBM PC – 1981- Intel 8088 CPU. 
Basic configuration 16K RAM. 

From Wikipedia
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LOOKING BACK…   1 COMPUTER SMARTPHONE PER PERSON

iPhone, introduced 
June 29, 2007;  
Samsung 32-bit RISC 
ARM 
Underclocked to 
412 MHz 
128 MB eDRAM Storage 
4, 8 or 16 GB flash 
memory 

From Wikipedia
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EVOLUTION OF SOCIETY

Remember: the iPhone was introduced just 11 years ago…
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Exponential increase of performances in 33 years

Summit – 2018  
200 PFLOPS (2x1017 FLOPS)

Cray 2 – 1985  
2 GFLOPS (2x109 FLOPS) X 100 000 000 

in 33 years

Peta = 1015 = million of milliard
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Exponential increase of performances in 33 years

Summit – 2018  
200 PFLOPS (2x1017 FLOPS)

Cray 2 – 1985  
2 GFLOPS (2x109 FLOPS)

Production car of 1985 
Lamborghini Countach 5000QV 
Max speed 300 Km/h

27 times the speed of light 
Warp 3 ? 
Star Trek Enterprise  
(Year: about 2290)

X 100 000 000 
in 33 years

Peta = 1015 = million of milliard
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PROGRESS OF COMPUTING TECHNOLOGY:  
CALCULATIONS PER SECOND AND PER DOLLAR

And after CMOS?
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THE END OF MOORE’S LAW

Parameter  
(scale factor = a)

Classic 
Scaling

Current 
Scaling

Dimensions 1/a 1/a

Voltage 1/a 1

Current 1/a 1/a

Capacitance 1/a >1/a

Power/Circuit 1/a2 1/a

Power Density 1 a
Delay/Circuit 1/a ~1

Source: Krisztián Flautner “From niche to mainstream: can critical systems 
make the transition?” 

DENNARD SCALING

Cf. talk of Alain Cappy
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22FD Next	Gen

FinFET

2017

2018

12FD
FDSOI

Technology evolution
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22FD

28nm

14nm

10nm

7nm

5nm

Next	Gen

Mechanical	switches

Hy
br
id
		

lo
gi
c	 Steep	slope	devices

Si	Quantum	bits

Disruptive	scaling

Monolithic	3D		for	3D	VLSI

FinFET

Alternative	to	scaling	and	
diversification

2017

2018

12FD

Silicon	Quantum	bits

FDSOI

Technology evolution

Non	planar	/	trigate	/	stacked	Nanowires
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M3D PRINCIPLE

CMOS/CMOS: 14nm vs 2D: 
Area gain=55% 
Perf gain = 23% 
Power gain = 12%

LETI, DAC 2014
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LOOKING FORWARD… HER (THE MOVIE)

What will be after the smartphone? 

                                       …
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LOOKING FORWARD… HER (THE MOVIE)

Multiple “computers” 
closely linked (or 
implanted?) with the 
individual through an 
“intelligent interface”
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Entering in  
Human and machine collaboration era

ENABLED BY ARTIFICIAL INTELLIGENCE  
(AND DEEP LEARNING)
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• Artificial Intelligence is changing the man-machine interaction – 
natural interfaces, ”intelligent” behavior 
• Image and situation understanding 
• Voice recognition and synthesis 
• Unstructured data pattern recognition, direct interfacing with the world 
• Creating the bridge between cyber and real world:  
    Enabling true Cyber Physical Systems 
• …decision taking… 

• Computer are not anymore a “PC” 

• They get input from the real world with sensors, not anymore with keyboards 

• They are everywhere, morph in our environment  

ENABLED BY ARTIFICIAL INTELLIGENCE  
(AND DEEP LEARNING)
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DEEP MANTA
MANY-TASK DEEP NEURAL NETWORK 
FOR VISUAL OBJECT RECOGNITION
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BUT COMPUTING SYSTEMS WERE NOT DESIGNED FOR CPS SYSTEMS 

In nearly all hardware and software of computing systems: 
Time is abstracted or even not present at all 

Very few programming languages can express time or timing constraints 

All is done to have the best average performance, not 
predictable performances 

Caches, out of order execution, branch prediction, speculative execution,…  
(Hidden) compiler optimization, call to (time) unspecified libraries 

Energy is also left out of scope 
This can have impact on data movement, optimizations 

Interaction with external world are second priorities vs. 
computation 

Done with interrupts (introduced as an optimization, eliminating unproductive 
waiting time in polling loops) which were design to be exceptional events… 

Etc. 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We need new computing paradigms more suited for 
Cyber AND Physical Systems

Cloud and data centers are not the answer to everything…
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System	should	be	autonomous	to	
make	good	decisions	in	all	
conditions	and	in	time

Embedded intelligence needs local high-end computing

Safety will impose that basic 
autonomous functions 
should not rely on “always 
connected” or “always 
available” 

And should not consume most power of an electric car!
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ONE ASPECT OF AI: PERSONAL ASSISTANTS....

Google Assistant Apple Siri Amazon Alexa 
with Zigbee
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DEEP LEARNING AND VOICE RECOGNITION
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" The need for TPUs really emerged about six years ago, 
when we started using computationally expensive deep 
learning models in more and more places throughout our 
products. The computational expense of using these 
models had us worried. If we considered a scenario where 
people use Google voice search for just three minutes a 
day and we ran deep neural nets for our speech 
recognition system on the processing units we were using, 
we would have had to double the number of Google 
data centers!"  

[https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-
TPU-our-first-machine-learning-chip.html]

DEEP LEARNING AND VOICE RECOGNITION
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Source from Bill Dally (nVidia) « Challenges for Future Computing Systems »  
HiPEAC conference 2015 

Type of device Energy / 
Operation

CPU 1690 pJ
GPU 140 pJ

Fixed function 10 pJ

26
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2017: GOOGLE’S CUSTOMIZED HARDWARE…

… required to increase energy efficiency  
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : training and inference in a 180 teraflops16 board 
(over 200W per TPU2 chip according to the size of the heat sink)



!28

… required to increase energy efficiency  
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : 11.5 petaflops16 of machine learning number crunching  
(and guessing about 400+ KW…, 100+ GFlops16/W)

Peta = 1015 = million of milliardFrom Google

2017: GOOGLE’S CUSTOMIZED TPU HARDWARE…
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ALPHAGO ZERO: SELF-PLAYING TO LEARN

From doi:10.1038/nature24270 (Received 07 April 2017)
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EXPONENTIAL INCREASE OF COMPUTING POWER FOR AI TRAINING

* https://blog.openai.com/ai-and-compute/

“Since 2012, the amount of compute used in the largest AI training runs has been increasing 
exponentially with a 3.5 month-doubling time  
(by comparison, Moore’s Law had an 18-month doubling period)*”
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ALPHAZERO: COMPUTING RESOURCES

Peta = 1015 = million of milliard

X 5000 = 200 KW*

* https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

X 40 days…
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HOUSTON, WE HAVE A PROBLEM…
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From “Total Consumer Power Consumption Forecast”, Anders S.G. Andrae, October 2017

The problem: 
IT projected to challenge future electricity 

supply
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COST OF MOVING DATA

Source: Bill Dally, « To ExaScale and Beyond » 
www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf 
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• Solution for presence sensing 
• 128 processing DSP cores 
• Read-out IC with image correction 

& processing capabilities 
• 128x128 pixel array for µ-bolometer detector 
• 128 column-wise ΔΣ ADCs + SIMD RISC processors 
• 12 frames of pixel-memory 

• Huge gain in power consumption compared to standard system for presence detection: power/
pixel reduced by over 90% compared to best in class low power IR product          

      (7,03 µW/pixel à 0,54 µW/pixel) 

• Dedicated algorithms for 
• Presence sensing 
• Localization 
• People counting 

• Privacy respected 
• Pre-processing on the sensor 
• Video is not transmitted

IR sensor with built-in 1st level image processing



!36

RETINE: image sensor + 3D stacked SIMD processors 
• Image sensor: 70% fill factor, 12 µm pixel, >5000 fps 
• SIMD processors: 192 units, distributed memory, 11.7 MOPS/mW 
• 1 k instructions / pixel @ 1000 fps

Preprocessing 
Asynchronous AER coding

Lens
Sensor layer 
130nm SOI 

Passive interposer or PCB

➔ x100 computing power, x10 energy efficiency, /15 processing latency

Retine Chip 
ALTIS 130nm, CuCu bonding 

Processor array die

Circuit demonstrator “Retine” 
L1@130 nm / L2@130 nm 
IC size : 160 mm² 
- Sensor : 192x256 @ 5500 fps /  
768x1024 @ 60 fps  
- Processing : 72 GOPS (192 SIMD 
processors)

L2

L1

NEW COMPUTING PARADIGMS AND DEEP LEARNING 
3D stacked retina with Spiking Neural Networks

Goal: to meet the performances and flexibility of the human eye for 
image analysis, inspection of defaults, detection of problems, …

Making an “intelligent retina”
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113mm² 
130nm/130nm 
1024x768 (192x256 binned) 
3D vias (signals): 6500 

Direct bonding cross section

Top tier

Bottom tier

DATA 

RAM
Instr. 
RAM

Top 
ctrl

MPX

16×12 MPX Matrix

Top chip

Bottom 
chip

16×12 MPX Matrix

MPX

3D via

1024 pixels

76
8 

pi
xe

ls

NEW COMPUTING PARADIGMS AND DEEP LEARNING 
3D stacked retina with Spiking Neural Networks

➔ x100 computing power, x10 energy efficiency, /15 processing latency
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REDUCING COMMUNICATIONS: OFF-CHIP PHOTONICS

Now Step 1 

Off board: AOC, 
optical modules Off chip: Optical I/O Time

S1

Chip	B

Chip	CO
pt
ic
al
	T
ra
ns
ce
iv
er

Silicon interposer/ Laminate

Chip	D

IC
Si interposer or laminate substrate

Driver / TIA

IC

Micro-pillars

PIC

Fiber 
Ferrule

PCB

Photonics: cost in sending information, nearly nothing in transmission
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REDUCING COMMUNICATIONS: IN-PACKAGE PHOTONICS

Now Step 1 Step 2 

Off board: AOC, 
optical modules Off chip: Optical I/O Optical network 

in package

S1

O
pt
ic
al
	T
ra
ns
ce
iv
er

Silicon Photonic interposer

Chip	C

Chip	A

Chip	D

Chip	B

RAMComputing 
Cores

Photonic	Interposer	

Tx/Rx Integr. Rx/Tx

Substrate

photo 
diode modul

Laser

Through  
Silicon Via

RF Cu pillars

Power Power Power Power

Light source

Primary I/O 
Cu pillars

Digital Cu pillars 
& proximity lines

Thermal Dissipation

Thermal Dissipation

SignalSignal

S2
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CODING INFORMATION DIFFERENTLY, ENABLING STDP  
(SPIKE TIMING DEPENDENT PLASTICITY)

post-synaptic	
Neuron	

pre-synaptic	
Neuron

Neuron

Axon
Dendrite

Electrical	 
signal

Synapse

Δt = tpost - tpre

S
yn

ap
tic

 w
ei

gh
t 

m
od

ifi
ca

tio
n 

(%
)

STDP = correlation 
detector 

➔ Possible 
learning model of 

the brain?

tpre tpost<tpretpost <

Causality 
Potentiation (LTP)

Anti-Causality 
Depression (LTD)
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INVESTIGATION OF RRAM AS SYNAPSES  
UNSUPERVISED LEARNING (INFORMATION CODED BY SPIKES)

PCM 
GST 
GeTe 
GST + HfO2 

M.Suri, et. al, IEDM 2011	
M.Suri, et. al, IMW 2012 , JAP 2012	
O.Bichler et al. IEEE TED 2012	
M.Suri et al., EPCOS 2013	
D.Garbin et al., IEEE Nano 2013

CBRAM
Ag / GeS2	

OXRAM

D.Garbin et al. IEDM 2014	
D.Garbin et al., IEEE TED 2015 

TiN/HfO2/Ti/TiN	

Thermal	
effect

Electrochemical	
effect

Electronic	effect	
oxygen	vacancies
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PCM

PCM-SYNAPSES

Recorded Stimuli Neuron-4th lane Neuron-5th lane

92% avg 
detection 
rate 
112µW 

M. Suri, IEDM 2011
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  OXRAM

PReset

OXRAM-SYNAPSES
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IBM	TrueNorth Intel	Loichi DynapSEL
Technology 28nm	CMOS 14	nm	CMOS 28	nm	FDSOI

Supply	Voltage 0.7-1.05	V 0.5-1.25	V 0.73-1	V

Design	Type Digital Digital Mixed-signal	

Neurons	per	core 256 Max	1k 256

Core	Area 0.094	mm2 0.4	mm2 0.36	mm2

Computation Time	multiplexing Time	multiplexing Parallel	processing

Fan	In/Out 256/256 16/4k 2k/8k

On-line	Learning No Programmable	 STDP

Synaptic	Operation	/	Second	/	
Watt

46	GSOPS/W 300	GSOPS/W

Energy	per	synaptic	operation 26	pJ 23.6	pJ <2	pJ

BENCHMARK
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• Test vehicle for spiking neural 
networks in 130nm CMOS with 
OxRAM elements between Metal 4 and 
Metal 5 of the back-end is done at CEA 
LETI. 

• Area is 1,8mm². It contains 10 neurons 
and 1440 synapses, (11,5k OxRAMs) 

• It can run MNIST (Characters 
recognition)

NEW COMPUTING PARADIGMS AND DEEP LEARNING 
SPIKING NEURAL NETWORK WITH OXRAM

SPIRIT test chip
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Short term structure 
à RRAM on top level to 

avoid contamination issue 
à Reuse of existing masks 

plus ebeam to build 1T1R 

à ”Synapses” are 
integrated in the very 
fabric of communication 

1 base ebeam required for RRAM definition 
RRAM based on HfO2/Ti/TiN low temp materials (~ 350°C) à no critical problems 
to integrate on the top level 

3D INTEGRATION COUPLED WITH RRAM FOR 
SYNAPTIC WEIGHTS
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Photonic

SW tools, benchmarks  and 
design methodologies

High Density 3D

New Memory 
Technologies

Neuromorphic

CoolCubeTM 

Heterogeneity & everything close

Neuro chiplet Scaling with FDSOI, 
FF and CoolCubeTM

Active silicon interposer, 
High density 3D

Photonic

New Memories 
(NVM) close to 
the logic

SW tools, benchmarks 
and design methodologies energy aware

POTENTIAL SOLUTION FOR COGNITIVE CYBER PHYSICAL 
SYSTEMS

Time
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• New technologies 
• Photonics for computing -> talk of Igor Carron 

• Neuromimetic -> talk of Patrick Pirim 
• Statistical –> talk of Pierre Bessière 
• Quantum computing -> all the talks of the afternoon 

• Sub-threshold 

• Printed/flexible electronics 

• Carbon nanotubes 

• Reservoir computing 

• Adiabatic computing 

• MEMS for computing 

• Synthetic biology, blob computing 

• Swarm computing 

• Symbiotic computing 

• Analogue/physic/hybrid computing 

• …

EXPLORE NEW WAYS AS ALTERNATIVE TO SILICON
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BACK TO THE ORIGIN:  
 WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?

In “First Draft of a Report on the EDVAC,” the first 
published description of a stored- program binary 
computing machine - the modern computer, John 
von Neumann suggested modelling the computer 
after Pitts and McCulloch’s neural networks.
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« The McCulloch-Pitts result puts 
an end to this. It proves that 
anything that can be completely 
and unambiguously put into 
words is ipso facto realizable by a 
suitable finite neural network. » 
J . Von Neumann, 1951

Finally 
something that 
can be named 

after me!

But technology was not ready in the 50’s,  
leading to realization with sequential processing 
And to the computer architecture we have now…

BACK TO THE ORIGIN:  
 WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?
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CONCLUSION: WE LIVE AN EXCITING TIME!

“The best way to predict the future is to invent it.”  
Alan Kay 
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Centre	de	Grenoble	
17	rue	des	Martyrs	

38054	Grenoble	Cedex

Centre	de	Saclay	
	Nano-Innov	PC		172	

91191	Gif	sur	Yvette	Cedexmarc.duranton@cea.fr

Thank you for your attention

Special thank you to Denis Dutoit, Christian Gamrat, 
Carlo Reita for their slides I borrowed.


