

LES CHALLENGES POSÉS PAR LES SYSTÈMES DE CALCUL POUR LES APPLICATIONS CYBER-PHYSIQUES COGNITIVES

Marc Duranton CEA Fellow Commissariat à l'énergie atomique et aux énergies alternatives

Séminaire Aristote : Réinventer l'informatique

6 décembre 2018

"The best way to predict the future is to invent it."

Alan Kay

LOOKING BACK... 1 COMPUTER FOR THE WHOLE PLANET

ENIAC (Electronic Numerical Integrator And Computer), built between 1943 and 1945.

ENIAC contained 20,000 vacuum tubes,

7200 crystal diodes, 1500 relays. It weighed more than 27 t, was roughly 2.4 m \times 0.9 m \times 30 m in size, occupied 167 m² and consumed 150 kW of electricity.

EDVAC was delivered in 1949.Functionally, EDVAC was a binary serial computer with automatic addition, subtraction, multiplication, programmed division and automatic checking with an ultrasonic serial memory capacity of 1,000 44-bit words. EDVAC's average addition time was 864 microseconds and its average multiplication time was 2,900 microseconds.

From Wikipedia

LOOKING BACK... 1 COMPUTER PER (MAJOR) COUNTRY

"I think there is a world market for maybe five computers."

Thomas Watson, president of IBM, 1943

LOOKING BACK... 1 COMPUTER PER HOUSE

"There is no reason anyone would want a computer in their home."

Ken Olsen, founder of Digital Equipment Corporation, 1977

The Altair 8800 by MITS – 1974 - Intel 8080 CPU. "1024 word" memory board populated with 256 bytes. The BASIC language was announced in July 1975 and it required one or two 4096 word memory boards

IBM PC – 1981- Intel 8088 CPU. Basic configuration 16K RAM.

From Wikipedia

LOOKING BACK... 1 COMPUTER SMARTPHONE PER PERSON

iPhone, introduced **June 29, 2007**; Samsung 32-bit RISC ARM Underclocked to 412 MHz 128 MB eDRAM Storage 4, 8 or 16 GB flash memory

From Wikipedia

EVOLUTION OF SOCIETY

Remember: the iPhone was introduced just 11 years ago...

Exponential increase of performances in 33 years

Cray 2 – 1985 2 GFLOPS (2x10⁹ FLOPS) X 100 000 000

Summit – 2018 200 PFLOPS (2x10¹⁷ FLOPS)

Peta = 10¹⁵ = million of milliard

Exponential increase of performances in 33 years

Production car of 1985 Lamborghini Countach 5000QV X 100 000 000 Max speed 300 Km/h 27 times the speed of light Warp 3 ? Star Trek Enterprise (Year: about 2290)

Peta = 10¹⁵ = million of milliard

PROGRESS OF COMPUTING TECHNOLOGY: CALCULATIONS PER SECOND AND PER DOLLAR

And after CMOS?

THE END OF MOORE'S LAW DENNARD SCALING

THE END OF MOORE'S LAW DENNARD SCALING Alain Capp.						
Parameter $(scale factor = a)$	Classic	Current				
(scale factor - a)	Scaling	Scaling				
Dimensions	I/a	I/a				
Voltage	I/a	1				
Current	I/a	I/a				
Capacitance	I/a	>1/a				
Power/Circuit	I/a²	I/a				
Power Density	1	a				
Delay/Circuit	I/a	~				

Source: Krisztián Flautner "From niche to mainstream: can critical systems make the transition?"

Technology evolution

Transistor 2D

Transistor « Tri-gate » 3D

Current control difficult when L_g < 20nm

Better control (2 sides + multiple gates)

Technology evolution

12FD

25nm T_{BOX}

22FD

20nm L_G

25nm T_{BOX}

ISPD SIC RSD **FDSOI**

Next Gen

Dark field STEM

Silicon Quantum bits

Non planar / trigate / stacked Nanowires

28nm	10nm	FinFET 2018	5 n n	n	
· · · · · · · · · · · · · · · · · · ·	2017	7nm	•	٠	_/
	Disruptiv	ve scaling		eep slope devices	
Alternative to scaling and			Hyb log ⊲	lechanical switches	
diversification		III.		Quantum bits	
	- 	Mo	Monolithic 3D for 3D VLSI		
					13

M3D PRINCIPLE

CMOS/CMOS: 14nm vs 2D: Area gain=55% Perf gain = 23% Power gain = 12%

LOOKING FORWARD...

What will be after the smartphone?

. . .

LOOKING FORWARD... HER (THE MOVIE)

Multiple "computers" closely linked (or implanted?) with the individual through an "**intelligent** interface"

Entering in Human and machine collaboration era

ENABLED BY ARTIFICIAL INTELLIGENCE (AND DEEP LEARNING)

ENABLED BY ARTIFICIAL INTELLIGENCE (AND DEEP LEARNING)

Artificial Intelligence is changing the man-machine interaction – natural interfaces, "intelligent" behavior

- Image and situation understanding
- Voice recognition and synthesis

- Unstructured data pattern recognition, direct interfacing with the world
- Creating the bridge between cyber and real world: Enabling true Cyber Physical Systems
- ...decision taking...

• Computer are not anymore a "PC"

- They get input from the real world with sensors, not anymore with keyboards
- They are everywhere, morph in our environment

DEEP MANTA

MANY-TASK DEEP NEURAL NETWORK FOR VISUAL OBJECT RECOGNITION

BUT COMPUTING SYSTEMS WERE NOT DESIGNED FOR CPS SYSTEMS

In nearly all hardware and software of computing systems: Time is abstracted or even not present at all

Very few programming languages can express time or timing constraints All is done to have the best average performance, not predictable performances

Caches, out of order execution, branch prediction, speculative execution,...
(Hidden) compiler optimization, call to (time) unspecified libraries

Energy is also left out of scope

This can have impact on data movement, optimizations

Interaction with external world are second priorities vs. computation

Done with interrupts (introduced as an *optimization*, eliminating unproductive waiting time in polling loops) which were design to be *exceptional events*...

Etc.

We need new computing paradigms more suited for Cyber AND Physical Systems

Cloud and data centers are not the answer to everything...

Embedded intelligence needs local high-end computing

System should be autonomous to make good decisions in all conditions and *in time* Should I brakes ransmission erro please retry later And should not consume most power of an electric car!

ONE ASPECT OF AI: PERSONAL ASSISTANTS....

Google Assistant

Apple Siri

Amazon Alexa with Zigbee

DEEP LEARNING AND VOICE RECOGNITION

DEEP LEARNING AND VOICE RECOGNITION

"The need for TPUs really emerged about six years ago, when we started using computationally expensive deep learning models in more and more places throughout our products. The computational expense of using these models had us worried. If we considered a scenario where people use Google voice search for just three minutes a day and we ran deep neural nets for our speech recognition system on the processing units we were using, we would have had to double the number of Google data centers!"

[https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html]

HiPEAC conference 2015

2017: GOOGLE'S CUSTOMIZED HARDWARE...

... required to increase energy efficiency with accuracy adapted to the use (e.g. float 16)

Google's TPU2 : training and inference in a **180 teraflops₁₆** board (over 200W per TPU2 chip according to the size of the heat sink)

2017: GOOGLE'S CUSTOMIZED TPU HARDWARE...

... required to increase energy efficiency with accuracy adapted to the use (e.g. float 16)

Google's TPU2 : 11.5 petaflops₁₆ of machine learning number crunching (and guessing about 400+ KW..., 100+ GFlops₁₆/W)

From Google

Peta = 10^{15} = million of milliard

ALPHAGO ZERO: SELF-PLAYING TO LEARN

From doi:10.1038/nature24270 (Received 07 April 2017)

EXPONENTIAL INCREASE OF COMPUTING POWER FOR AI TRAINING

"Since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially with a 3.5 month-doubling time

(by comparison, Moore's Law had an 18-month doubling period)*"

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

https://blog.openai.com/ai-and-compute/

Year

ALPHAZERO: COMPUTING RESOURCES

Peta = 10^{15} = million of milliard

* https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

The problem:

Expected case scenario

From "Total Consumer Power Consumption Forecast", Anders S.G. Andrae, October 2017

COST OF MOVING DATA

The High Cost of Data Movement

Fetching operands costs more than computing on them

Source: Bill Dally, « To ExaScale and Beyond » www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf

IR sensor with built-in 1st level image processing

- Solution for presence sensing 128 processing DSP cores • Read-out IC with image correction 128x128 Polar. bolometer pixel & processing capabilities array with 144b/pixel SRAM 128x128 pixel array for µ-bolometer detector 128 column-wise $\Delta\Sigma$ ADCs + SIMD RISC processors 128 colum wise AD CTIA 12 frames of pixel-memory 16b Instructio decode 128 colum wise processing cores Huge gain in power consumption compared to standard system for presence detection: power/ pixel reduced by over 90% compared to best in class low power IR product $(7,03 \mu W/pixel \rightarrow 0.54 \mu W/pixel)$ **Dedicated algorithms for** Presence sensing 🕋 Enlink
 - Localization
 - People counting
 - **Privacy respected**
 - Pre-processing on the sensor
 - Video is not transmitted

2/24b data output

Ceatech

NEW COMPUTING PARADIGMS AND DEEP LEARNING 3D stacked retina with Spiking Neural Networks

<u>Goal:</u> to meet the performances and flexibility of the human eye for image analysis, inspection of defaults, detection of problems, ... Making an "*intelligent retina*"

Layer 1: image sensor Connexion L1/L2 inside focal plane 1 1 2 Preprocessing Synchronous AER coding Passive interposer or PCB

Processor array die

Retine Chip ALTIS 130nm, CuCu bonding

Circuit demonstrator "Retine" L1@130 nm / L2@130 nm IC size : 160 mm² - Sensor : 192x256 @ 5500 fps / 768x1024 @ 60 fps - Processing : 72 GOPS (192 SIMD processors)

x100 computing power, x10 energy efficiency, /15 processing latency

Ceatech

NEW COMPUTING PARADIGMS AND DEEP LEARNING 3D stacked retina with Spiking Neural Networks

→ x100 computing power, x10 energy efficiency, /15 processing latency

REDUCING COMMUNICATIONS: OFF-CHIP PHOTONICS

Photonics: cost in sending information, nearly *nothing in transmission*

REDUCING COMMUNICATIONS: IN-PACKAGE PHOTONICS

CODING INFORMATION DIFFERENTLY, ENABLING STDP (SPIKE TIMING DEPENDENT PLASTICITY)

INVESTIGATION OF RRAM AS SYNAPSES UNSUPERVISED LEARNING (INFORMATION CODED BY SPIKES)

D.Garbin et al., IEEE Nano 2013

D.Garbin et al. IEDM 2014 D.Garbin et al., IEEE TED 2015

PCM-SYNAPSES

M. Suri, IEDM 2011

Ceatech

Recorded Stimuli

Neuron-4th lane

Neuron-5th lane

42

OXRAM-SYNAPSES

Institut national de la santé et de la recherche médicale

BENCHMARK

	IBM TrueNorth	Intel Loichi	DynapSEL
Technology	28nm CMOS	14 nm CMOS	28 nm FDSOI
Supply Voltage	0.7-1.05 V	0.5-1.25 V	0.73-1 V
Design Type	Digital	Digital	Mixed-signal
Neurons per core	256	Max 1k	256
Core Area	0.094 mm ²	0.4 mm ²	0.36 mm ²
Computation	Time multiplexing	Time multiplexing	Parallel processing
Fan In/Out	256/256	16/4k	2k/8k
On-line Learning	No	Programmable	STDP
Synaptic Operation / Second / Watt	46 GSOPS/W		300 GSOPS/W
Energy per synaptic operation	26 pJ	23.6 pJ	<2 pJ
		The second	

NEW COMPUTING PARADIGMS AND DEEP LEARNING SPIKING NEURAL NETWORK WITH OXRAM

- Test vehicle for spiking neural networks in 130nm CMOS with OxRAM elements between Metal 4 and Metal 5 of the back-end is done at CEA LETI.
- Area is 1,8mm². It contains 10 neurons and 1440 synapses, (11,5k OxRAMs)
- It can run MNIST (Characters recognition)

3D INTEGRATION COUPLED WITH RRAM FOR SYNAPTIC WEIGHTS

Short term structure

- → RRAM on top level to avoid contamination issue
- → Reuse of existing masks plus ebeam to build 1T1R

→ "Synapses" are integrated in the very fabric of communication

1 base ebeam required for RRAM definition RRAM based on $HfO_2/Ti/TiN$ low temp materials (~ 350°C) \rightarrow no critical problems to integrate on the top level

POTENTIAL SOLUTION FOR COGNITIVE CYBER PHYSICAL SYSTEMS

EXPLORE NEW WAYS AS ALTERNATIVE TO SILICON

New technologies

- Photonics for computing -> talk of Igor Carron
- Neuromimetic -> talk of Patrick Pirim
- Statistical –> talk of Pierre Bessière
- Quantum computing -> all the talks of the afternoon
- Sub-threshold
- Printed/flexible electronics
- Carbon nanotubes
- Reservoir computing
- Adiabatic computing
- MEMS for computing
- Synthetic biology, blob computing
- Swarm computing
- Symbiotic computing
- Analogue/physic/hybrid computing

BACK TO THE ORIGIN: WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?

In "First Draft of a Report on the EDVAC," the first published description of a stored- program binary computing machine - the modern computer, John von Neumann suggested modelling the computer after Pitts and McCulloch's neural networks.

BACK TO THE ORIGIN: WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?

But technology was not ready in the 50's, leading to realization with sequential processing And to the computer architecture we have now...

CONCLUSION: WE LIVE AN EXCITING TIME!

"The best way to predict the future is to invent it." Alan Kay

Thank you for your attention

Special thank you to Denis Dutoit, Christian Gamrat, Carlo Reita for their slides I borrowed.

marc.duranton@cea.fr

Centre de Grenoble 17 rue des Martyrs 38054 Grenoble Cedex Centre de Saclay Nano-Innov PC 172 91191 Gif sur Yvette Cedex