Towards a practical realization of spin based quantum nanoprocessors

Quantum superposition

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

Quantum computing machines

3 bits

111

3 quantum bits

|000> -|001> +|010> -|100> +|101> +|110> -|011> +|111>

Quantum parallelism

Quantum computing machines

3 bits

3 quantum bits

+ $e^{i\pi/4}|000>$ - $e^{-i\pi/4}|001>$ + $e^{i\pi/4}|010>$ - $e^{i\pi/4}|100>$ + $e^{-i\pi/4}|101>$ + $e^{i\pi/4}|110>$ - $e^{-i\pi/4}|011>$ + $e^{-i\pi/4}|111>$

Quantum parallelism

How many qubits do we need?

Quantum supremacy in **simulation**: **>56** logical qubits

Quantum chemistry for medicine and material development: >200 logical qubits

Prime factorization of large numbers for **security**: >2000 logical qubits

Applications in major industries

Ten-year Forecasts of Quantum Computing Spending by End-User Segments (\$ Millions)

Connectivity

- □ Full connectivity between qubits □ 4 N control parameters (refinement with □ N individual control + N(N-1) two-body teconstrol
- □ Correcting codes implemented in ion trap

Nearest neighbor interaction

1D, 2D, 3D?

C. Jones et al, Arxiv 2016

- Nearest neighbors
- Need for interconnection between distant qubits
- 1D requires multiple swapping

- □ Nearest neighbors
- No need for interconnection between distant qubits
- □ Compatible with reported fidelities

2D arrangement and 4 neighbors

Living with errors

Millions of errorless quantum operations

millions of physical qubits in a 2D array

Physical platforms for quantum computing

Ion Traps

Photonic chips

Defects in solids (NV,SiC)

Superconducting Qubits

semiconductor spin qubits

Topological qubits

Qubit figures of merit

Speed, competitive run-time quantum calculation

Fidelity, logical qubits better than physical qubits

Size, manageable dimensions of the quantum circuit

Semiconductor spin qubits

Quantum information encoded in a spin degree of freedom

$$\begin{vmatrix} \mathbf{1} \rangle \longrightarrow \left[\delta = |g \ \mu_B B \right] \qquad \text{Spin qubit state:} \\ |\mathbf{0} \rangle \longrightarrow \left[\delta = |g \ \mu_B B \right] \qquad |\mathbf{S} \rangle = \mathbf{a} |\mathbf{0} \rangle + \mathbf{b} |\mathbf{1} \rangle$$

- Many possible physical realizations
- First demonstrations using electron spins in GaAs quantum dots (2005)
- Efforts now shifting to silicon

B.E. Kane, Nature 393, 133, 1998 D.P. DiVincenzo, Nature 393, 113, 1998

Silicon spin qubits

Adapted from M. H. Devoret, R. J. Schoelkopf, Science 2014

Isotopic purification => suppressed dephasing from ²⁹Si nuclear spins

29**S**i

³⁰Si

(4.7%)

(3.1%)

Mazzocchi et al., J of Crystal Growth (2018)

S=0

S=1/2

S=0

	Google, Santa Barbara Superconductors	TU Delft Silicon	Blatt group, Innsbruck	O'Brien group, Bristol Photon
Nb of entangled qubits	20	2	20	10
Size	(100µm)²	(100nm) ²	(1mm) ²	(1mm) ²
Fidelity	~99.9%	~98%	99.99%	50% (measurement /generation) 98% (one, two-qubit gate)
Speed	100 ns	1 µs	100 µs	1 ms
Ciliana aubite offer a commolling alsternes				

Silicon qubits offer a compelling platform

Silicon qubits worldwide

Next: large-scale integration

tolerant) quantum processor

CMOS quantum dot

M Hofheinz et al., APL (2007)

First CMOS spin qubits

Electric-field driven electron-spin manipulation

Corna et al. Nat. Quantum Inf. 2018 Bourdet & Niquet, Phys. Rev B 2018

High-fidelity electron-spin readout via rf gate reflectometry

Urdampilleta et al., arXiv:1809.04584

Towards multi-qubit operations

Next step: scalability?

Next step: scalability?

Array architecture

Patent Meunier, De Franceschi, Vinet, Hutin (2017)

Coupling between sensor & qubit

3D CMOS nanoscale integration *L. Brunet, VLSI (2017)*

Lateral tunnel coupling (experiment & simulation) S. De Franceschi, IEDM (2016)

Si vias to interconnect the layers

Large scale control

Coherent control of 2D array *PA Mortemousque et al., Arxiv (2018)*

Scalable quantum/classical interface

Multiplexed read-out and control₂₆

Conclusion

Quantum information is powerful, but it is **very fragile**. Each possible qubit: **stability/addressability trade-off**

Late-blooming Si spin qubits on the rise from an underdog's position

Quantum Error Correction is needed for useful universal computing, hence **large scale integration**.

⇒Si spin qubits have strong potential for extensibility, which entails numerous fundamental and engineering challenges

www.quantumsilicon-grenoble.eu

European Research Council Established by the European Commission

www.mos-quito.eu

Thank you!