

The Machine: The future of technology

patrick.demichel@hp.com Hyperscale Division EMEA

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Agenda

1: Vision **2: Core Technologies** 3: Systems Moonshot The Machine

Tsunami of data on the horizon

202X will be the decade of Extreme Data; massive compute is required for Extreme Analytics

1990

100/

2008 2010 2012

Lincoln Stein, Genome Biology, vol. 11(5), 2010

2003 2004 2006

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Today's computing infrastructure unable to keep up

You won't be able to get more capacity for less

Big Data will be too big to extract meaning from

You won't be able to move your data from where it's created – useful data may get ignored or discarded

By the time you've analyzed your data – it will be out of date

Your infrastructure will require more resources than you can get

Securing your enterprise will take more computing resources than you have

Internet of Everything

By 2020

(1) IDC "Worldwide Internet of Things (IoT) 2013-2020 forecast" October 2013. (2) IDC "The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things" April 2014 (3) Global Smart Meter Forecasts, 2012-2020. Smart Grid Insights (Zypryme), November 2013 (4) http://en.wikipedia.org

Projects and roadmap Holistic, systematic & step-wise roadmap to revolutionary impact

Moonshot

HP Labs innovations for 10X improvment on TCO, energy, complexity, density

DCDC for extreme analytics driving a gigantic mesh of things

The Machine

HP Labs innovations for 10-100X disruptions & new information-to-insight markets

Moonshot

HP Moonshot: the first step

Special purpose SoCs 🛛 🔁

Traditional Server Motherboard

System on a Chip (SoC)-based Server

- Less general-purpose, more workload focused ٠
- Dramatic reduction in power, cost, and space ٠
- SoC vendors bring their own differentiated ٠ features and opportunities to disrupt markets
- Rapide cadence of innovation

*Source: HP internal research

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Specialized & unbound

Where does Moonshot fit in your data center?

The flexibility to choose from combinations of CPU, memory, storage, and networking

	O O	P				<u>2</u>	Typical workloads
ProLiant	Compute	Specialized cores	Networking	Memory	Storage	Density	
m300	Atom™ C2750 8 core/Soc	N/A	Dual port 1GbE /CPU	32GB	SFF HDD or SSD	45/4.3U	Web infrastructure, dedicated hosting, distributed analytics, NoSQL databases
m350	Atom™ C2730 8 core/SoC	N/A	Dual port 1GbE /CPU	64GB 16GB/SoC	Local SSD (NGFF/m.2)	180/4.3U	Web hosting, distributed analytics
m400	ARM 64bit 8 cores/SoC	N/A	Dual port 10GbE /CPU	64GB	Local SSD (NGFF/m.2)	45/4.3U	Memory caches, in-memory analytics, science and engineering applications
m700	Opteron™ X2150 4 core /SoC	GPU 128 cores/SoC	Dual port 1GbE /CPU	32GB 8GB/SoC	4 x 64GB iSSD	180/4.3U	Hosted desktop infrastructure, gaming, content distribution network (CDN)
m710	Xeon E3 4 cores/SoC	GPU Iris Pro + 128MB eDDR	Dual port <mark>10GbE</mark> /CPU	32GB	Local SSD (NGFF/m.2)	45/4.3U	Video transcoding, gaming, application delivery, extreme file transfer
m800	ARM A15 4 cores / SoC	C66x DSP 8 cores/ SoC	Dual port 1GbE /CPU + <mark>2D Torus</mark>	32GB 8GB/SoC	Local SSD (NGFF/m.2)	180/4.3U	Real-time data processing, complex event processing, IP transcoding

Moonshot Data Fabrics

Radial Communication

 High speed interfaces between each cartridge and two radial fabric slots; external connectivity

Proximal Array

 Five separate 3x3 proximal array fabrics within 2D Torus Mesh

2D Torus Mesh

 High bandwidth cartridge-tocartridge communication (North, South, East, West)

Technologies for Extreme computing

3 disruptive technologies to the rescue

Disruption #1: Non-volatile memories

Breakthrough in storage and memory technology

Scientists Create First Memristor: Missing Fourth Electronic Circuit Element

 BY BRYAN GARDINER
 04.30.08
 10:03 AM
 PERMALINK

 Share
 1
 1
 Y Tweet
 0
 8+1
 2
 1
 Share
 Pinit

Researchers at HP Labs have built the first working prototypes of an important new electronic component that may lead to instant-on PCs as well as analog computers that process information the way the human brain does.

The new component is called a memristor,

Technology	Density	Bandwidth	Latency	Latency	Energy	Energy
	(µm²/bit)	(GB/s)	Read (ns)	Write (ns)	Read (pJ/b)	Write (pJ/b)
Hard Disk	N/A	0.5	3,000,000	3,000,000	2500	2500
Flash SSD [3] [6]	0.0021	1.0	25,000	200,000	250	250
DRAM [6] [30]	0.0038	51.2	55	55	24	24
PCRAM (22nm) [30]	0.0058	variable	48	150	2	19.2
Memristor (22nm) [8]	0.0048	variable	100	100	1-3	1-3

Store large amounts of data permanently like hard disks, but 100,000 times faster, and at much lower energy

UNIVERSAL MEMORY

Massive memory pool

A drastic reduction of the memory stack complexity and cost

But requires a complete software stack redesign to leverage the full potentiality of the new architecture

Memristors change how and where data are stored

Nanostores: in-memory compute

Shortly we will produce so much data that it will be impossible to move them, even with photonic

Flat converged storage hierarchy with compute colocation for 10x-100x improvement in performance per Watt

-**111**-

Disruption #2: HP Photonics

for faster data transmission and lower energy

Transmit data using light for **30-fold more** bandwidth at **One-tenth the energy**

• Bandwidth scaling

• 30x improvement over copper

Lower Power

- 10x improvement over copper links
- Improved airflow & cooling
- Equivalent cost

All communications will be optical

Photonics destroys distance

16 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

6 words to summarize the vision

Not substitutional technologies Holistic re-architecting to get all benefits

The MACHINE

The Machine: towards a new computing paradigm

New architecture enables fundamental changes

Analytics solutions and visualization

Next-gen analytics algorithms

Distributed workloads and data management at cloud scale

A Massive Mesh of intelligent objects

Use case: the smart cell tower

Aspirational History

	 SoC Partners co-developn Machine OS begins 	 selected for nent development Memristors Physical infr prototypes Open Source emulators r ISV Partner 	s begin sampling frastructure of Core s established ree Machine OS SDK and released er collaborations begin		 Edge devices ship in volume Core Machines running real-world workloads at scale Machine OS released Core devices at volume Machine available as product, service, and as a business process transformation 		
*** **	2014	2015	2016	2017	2018	2019	2020
۰٬۱۱۲۰ میں ایک میں ایک میں ایک میں ایک میں ایک میں میں ایک میں			 Memristor launched Integrated technologi demonstra 	DIMMs core es ted			Distributed mesh compute goes mainstream
				 Edge device Machine OS 	es begin sampling enters public beta		

Ш_

The MACHINE

The Machine Webpage

The Machine 3 min video

Memristor Lab Tour

Photonics Lab Tour

HP Analytics Lab

HP Security and Cloud Lab

This changes everything

Any questions?