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Introduction to the Exascale programming
challenge - ¢ coLoc

¢ Increasing number of nodes, cores, accelerators

— Some resources do not scale
 Memory per core, Bandwidth, Coherence protocol, Network
interconnect, Fault tolerance
— Multiplication of hierarchical levels => Non uniformity
and Heterogeneity

* Frontier are becoming fuzzier => Distributed/shared?
Software/hardware? "Core" definition? Compute capabilities,
imbalance...

 Different scales: BW, memory size, performance
» Global events: barrier, broadcast, memory coherency



S coLoc

Evolutions are requested for applications, runtimes and
programming models



Introduction to the Exascale programming
challenge . ¢ coLoc

& More concurrency
— Enough independent tasks
— Communication overlap
— Privatize memory to avoid communication (& sync)

— Remember Amdahl: the more core, the higher the
proportion of the sequential code is

& More locality

— Memory

« Core level, Socket level (including HWA), Network level
— But also communication

« Synchronization, Data

& We need both for performance scalability



Why not experimenting in the original

application? B ¥ coLoC

> Full applications are complex and costly to execute at scale
— Difficulty to experiment ground breaking solutions
— Cost of the experiments (time, PY, CPUs)
— Need proof of concept demonstrating ROI to decide
> Codes and use-cases might not be easily shared with the
community
> Need a strong and daily support of the application developer
> Portability of the solution
— Over specialization
— Learning curve, even in the same company/context

Ny

Ny

Ny

Ny



The Proto-App Concept :

Ny

> Aka mini-app, proxy-app (NERSC trinity, Argonne CESAR, the
Montevo project...)

& Qbjectives: Reproduce at scale the behavior of a set of HPC

applications and support the development of optimizations that can
be translated into the original applications

» Easier to execute, modify and re-implement

& |f you cannot make the application open-source, you can at least
open-source the problems.

— Support community engagement
— Reproducible and comparable results
— Interface with application developers



Two alternatives with pros and cons
— Build-up (upcoming mini-FMM, stay tune)
* ‘Mini-app’ that mimic a full application with simpler physic
» All aspects are explored
* No/Less IP issue(s)
* No specific problem targeted
» Behavior at scale?
* Representativeness?
+ Feedback to the real code?
+ Use cases?
— Strip down (mini-FEM)
‘Proxy-app’ which extracts and refines a particular kernel from an application
» Target a specific issue
« Must be representative at scale
« Easy feedback to the user
* Only a part of the application is addressed
* Problem coupling?
» Use cases generation?
* |P (code and use case)

IMHO | prefer the second one, building multiple proto-apps from an application
to expose the different problems => however it requires the application
developer and end-user experience



Use-case presentation ..., o Q
With L. Thébault, N. Moller, QV Dinh  r-timiie e %) DASSAULT - v COLOC

« CSR matrix assembly from an unstructured mesh
* Proto-application extracted from DEFMESH (Dassault
Aviation)

» Successfully ported back into AETHER (CFD code at
Dassault Aviation)

Reduction done on each edge from all
neighboring elements

Edges update (+= reduction) must be
sequential

|

1

- Xij # O if there is an edge
e il between iand j
' (Very) Sparse and symmetric
matrix




Mini-FEM DC: a Scalable Nested Parallelism
for Unstructured Meshes - ¢ coLocC

& Current parallelization

approaches
& WIll not be efficient on future
v & 1000’s nodes of 1000 cores
\l( /[for . [lfor o
- - 5 ¢ Exascale nodes !
P %é = Efficient hybrid parallelization
] Com ﬁ is requested
— — Barrier
Efficient on curent Simple to implement
architectures Bad locality (can be mitigated |
Sub-optimal on future using blocking)
architectures High memory bandwidth
Data duplications requirements

Synchronisations Global synchronizations



D&C: a Scalable Nested Parallelism for
Unstructured Meshes = ¥ COoLOC

Can create many independent tasks
=> Concurrency
Leaves data set can be downsized at will to fit
into caches
=> Data locality
Only one synchronization per task between

Q ’ C{ P neighbors
Q\ /O => Sync locality

Only Log (N) sync on the critical path

O => Sequential part minimization
function compute (partition)
if Node is not a leaf - Open source DC_lib (LGPL)
spawn compufce_ (pa.rtition.left) 0O ; licati
compute (partition.right) - pen source PTO o-application
Sync - Can be reuse in place for any loop over

compute (partition.sep) .
else elements or loop over nodes in FEM

FEM_assembly (partition) codes
end
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Vectorization & ® CoLOC

¢ Coloring at node or socket level has proven to be a bad
idea, however...

¢ Coloring has been designed in the context of vector
machines
¢ A core itself is a vector machine...

=> Let’s try coloring!

& The following results use the vectorization model as
described in our PPOPP 2015 paper

Loic Thébault, Eric Petit and Quang Dinh. Scalable and efficient implementation of 3d unstructured
meshes computation: A case study on matrix assembly. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’15, USA, 2015.
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for each element E

myColor = 0, mask = 1

for each neighbor elements NE
neighborColor |= elemToColor [NE]

while (neighborColor & mask)
neighborColor = neighborColor >> 1
myColor++

elemToColor[(E] = (mask << myColor)

14
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SOA Longest Color Strategy :

> Poor vectorization ratio
> Probably not enough data parallelism in the data that fit
In cache...

> However the small amount of available data parallelism
is badly exploited: heuristics for large domains are not
efficient on smaller domains fitting into cache!

— Longest colors constraint the number of colors

=> \We do not need such a constraint, we want ‘long
enough’ colors only!

Ny

Ny

Ny
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for each element E

myColor = (0, mask = 1
for each neighbor elements NE
neighborColor (= elemToColor[NE]
while (neighborColor & mask ||
colorCard{myColor] >= VEC_SIZE)

neighborColor = neighborColor >> 1
myColor++

elemToColor(E] = (mask << myColor)

colorCard[myColor]++

17
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Sequential loop of vectors, no need for a parallel loop
= Permutation allows to forget about the colors,
=> Align the data dependencies on iteration frontier
= Just remember offset for the next vector size.

=> Future work: mix vector size using mask/padding

for each color C in a leaf
vec_for elem in [0:C_SIZESVEC _SIZE]
seq_for elem in [C_SIZESVEC_SIZE:C_SIZE]

Without reordering

vec_for elem in [Q:offset]
seq_for elem in [offset:LEAF_SIZE]

With reordering

oooooooooooo

;AVX'looﬁ . . Seq loop T
Offset Vec loop

10% shorter with bounded

N "

. 'seq
Oftset loop
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Results: Vectorization & ® CoLOC

& With increasing vector size we need increasing
dataset size to be efficient on unstructured data
— But cache size per core is decreasing
— And vector size is getting larger
=> Can'’t run efficiently in L1 with vectors on current phi !!!
(and L2 on phi ®...)
& The current gather operations require large
compute intensity to be overlapped
= Some loops are faster not being vectorized

20



N > coLoc

Data Locality

/ Pure coloring \

Data Unstructuredness Data Parallelism

21



N > coLoc

Table 1. Vectorization expected speed-ups for a leaf size of 200.
vecSize 2 3 4 5 8 (native) 16

Bounded vecRatio 096 090 083 0.76 0.55 0.02
Expected_SU 127 136 138 1.37 1.27 1,01

Longest vecRatio 0.91 0.74 0.44
Expected SU 1.25 1.32 1.20
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Hardware trade-off & ® CoLOC

— Best HW vector size is application dependent

— The choice of the architect is a tradeoff based on
benchmarks
=Co-design is required
=Provide him with your proto-apps !
— Larger/faster memory

* Not the actual trend, at least not smaller and slower would be
good

* However the bandwidth is increasing, but not all the
algorithms can beneficiate from it. (e.g. Massive SPMD
model like in GPU programming)

23



Back to the 70’s & ® COoLOC

Ny

> Yes it already existed in the past
> Long vector machines are back...

> Actually it is more accurate to say: high ratio vector
length/memory machines are back

> Predicates, masks, complex vector operations,
divergence, N1/2...

Ny

Ny

Ny

Ny

> New branch, taking a new direction from a solid basis of
previous work => we are not doomed!
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New OpenMP version of DC_lib:

1.0
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Parallel Efficiency
o
[}

o
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0.2

0.0

Significant difference on the physical cores
Larger overhead of the OpenMP runtime?
Hyper-threads compensate on larger core

However not really promising for the future
Tests on BlueGene coming soon!
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The OpenMP version of DC_lib
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As for future work & ® CoLOC

& |In exa2ct and coloc, all our developments are open
source

— Coria Yales2 for load balancing of chemistry and
lagrangian particles (exa2ct)

— More experiments on the proto-app of the multigrid
solver of DLR Tau provided by Tsystem (exa2ct)

— Experimenting GASPI RMA async one sided and
compare to MPI3.0 in distributed DC version of Mini-
FEM + solver (Coloc)

— FMM with async one sided, efficient data placement
and load balancing, and efficient shared memory
parallelization (many-core requirement) (Coloc)
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¢ Other requests and ideas are welcome! ;)
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