:

The challenge of code modernization for
the Exascale: methodology and early
experiments

Eric Petit, eric.petit@prism.uvsa.ft | 1vensire or \/

i i VERSAILLES @
Aristote Seminar, Feb. 5th 2015, X, France T OUEMTIN EN A VEL INES

N efe)Melel The COncurrency and LOcality Challenge

XX 1TEAZ

=) EXascale Algorithms and Advanced Computational
Techniques

Introduction to the Exascale programming
challenge - ¢ coLoc

¢ Increasing number of nodes, cores, accelerators

— Some resources do not scale
 Memory per core, Bandwidth, Coherence protocol, Network
interconnect, Fault tolerance
— Multiplication of hierarchical levels => Non uniformity
and Heterogeneity

* Frontier are becoming fuzzier => Distributed/shared?
Software/hardware? "Core" definition? Compute capabilities,
imbalance...

 Different scales: BW, memory size, performance
» Global events: barrier, broadcast, memory coherency

S coLoc

Evolutions are requested for applications, runtimes and
programming models

Introduction to the Exascale programming
challenge . ¢ coLoc

& More concurrency
— Enough independent tasks
— Communication overlap
— Privatize memory to avoid communication (& sync)

— Remember Amdahl: the more core, the higher the
proportion of the sequential code is

& More locality

— Memory

« Core level, Socket level (including HWA), Network level
— But also communication

« Synchronization, Data

& We need both for performance scalability

Why not experimenting in the original

application? B ¥ coLoC

> Full applications are complex and costly to execute at scale
— Difficulty to experiment ground breaking solutions
— Cost of the experiments (time, PY, CPUs)
— Need proof of concept demonstrating ROI to decide
> Codes and use-cases might not be easily shared with the
community
> Need a strong and daily support of the application developer
> Portability of the solution
— Over specialization
— Learning curve, even in the same company/context

Ny

Ny

Ny

Ny

The Proto-App Concept :

Ny

> Aka mini-app, proxy-app (NERSC trinity, Argonne CESAR, the
Montevo project...)

& Qbjectives: Reproduce at scale the behavior of a set of HPC

applications and support the development of optimizations that can
be translated into the original applications

» Easier to execute, modify and re-implement

& |f you cannot make the application open-source, you can at least
open-source the problems.

— Support community engagement
— Reproducible and comparable results
— Interface with application developers

Two alternatives with pros and cons
— Build-up (upcoming mini-FMM, stay tune)
* ‘Mini-app’ that mimic a full application with simpler physic
» All aspects are explored
* No/Less IP issue(s)
* No specific problem targeted
» Behavior at scale?
* Representativeness?
+ Feedback to the real code?
+ Use cases?
— Strip down (mini-FEM)
‘Proxy-app’ which extracts and refines a particular kernel from an application
» Target a specific issue
« Must be representative at scale
« Easy feedback to the user
* Only a part of the application is addressed
* Problem coupling?
» Use cases generation?
* |P (code and use case)

IMHO | prefer the second one, building multiple proto-apps from an application
to expose the different problems => however it requires the application
developer and end-user experience

Use-case presentation ..., o Q
With L. Thébault, N. Moller, QV Dinh r-timiie e %) DASSAULT - v COLOC

« CSR matrix assembly from an unstructured mesh
* Proto-application extracted from DEFMESH (Dassault
Aviation)

» Successfully ported back into AETHER (CFD code at
Dassault Aviation)

Reduction done on each edge from all
neighboring elements

Edges update (+= reduction) must be
sequential

|

1

- Xij # O if there is an edge
e il between iand j
' (Very) Sparse and symmetric
matrix

Mini-FEM DC: a Scalable Nested Parallelism
for Unstructured Meshes - ¢ coLocC

& Current parallelization

approaches
& WIll not be efficient on future
v & 1000’s nodes of 1000 cores
\l(/[for . [lfor o
- - 5 ¢ Exascale nodes !
P %é = Efficient hybrid parallelization
] Com ﬁ is requested
— — Barrier
Efficient on curent Simple to implement
architectures Bad locality (can be mitigated |
Sub-optimal on future using blocking)
architectures High memory bandwidth
Data duplications requirements

Synchronisations Global synchronizations

D&C: a Scalable Nested Parallelism for
Unstructured Meshes = ¥ COoLOC

Can create many independent tasks
=> Concurrency
Leaves data set can be downsized at will to fit
into caches
=> Data locality
Only one synchronization per task between

Q ’ C{ P neighbors
Q\ /O => Sync locality

Only Log (N) sync on the critical path

O => Sequential part minimization
function compute (partition)
if Node is not a leaf - Open source DC_lib (LGPL)
spawn compufce_ (pa.rtition.left) 0O ; licati
compute (partition.right) - pen source PTO o-application
Sync - Can be reuse in place for any loop over

compute (partition.sep) .
else elements or loop over nodes in FEM

FEM_assembly (partition) codes
end

10

20000

10000-

20000~

10000

10000

20000

g

et

ke“h
light
Sop

10000

20000

10000

10800 20650

(~Similar to Nested dissection
for fill-minimization in sparse LU,
see in MUMPS)

Iﬁe“h
o
s

11

60000 —

20000 -

1088705

== F7X Ref :
~— F7XD&C .
5 .
: L N N
NN .
™ . .l
NN :
\ \ N :
- » N
™
| 1 | |} I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Centiles

Cache misses

6000

5000

4000

3000

2000

1000

Cache misses - 4MPI

T
Assemblage I

ref novec

ref vecb4 dc novec

Vectorization & ® CoLOC

¢ Coloring at node or socket level has proven to be a bad
idea, however...

¢ Coloring has been designed in the context of vector
machines
¢ A core itself is a vector machine...

=> Let’s try coloring!

& The following results use the vectorization model as
described in our PPOPP 2015 paper

Loic Thébault, Eric Petit and Quang Dinh. Scalable and efficient implementation of 3d unstructured
meshes computation: A case study on matrix assembly. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’15, USA, 2015.

13

for each element E

myColor = 0, mask = 1

for each neighbor elements NE
neighborColor |= elemToColor [NE]

while (neighborColor & mask)
neighborColor = neighborColor >> 1
myColor++

elemToColor[(E] = (mask << myColor)

14

Number of elements

2000000 =
1500000 =
1000000 =

500000 =

6e+05 —

4e+05 =

2e+05 =

0e+00 = "

3e+05 =

2e+05 =

1e+05 =

0e+00 = "

Subdomain Max Size: 50
Vector Length: SSE

Vec Ratio
69.6%

Subdomaln Max Slze. 200
Vector Length: SSE
90.9%

Subdomam Max Slze. 500
Vector Length: SSE

Vec Ratio

Vec Ratio
94.9%

2000000 =
1500000 =
1000000 =

500000 =

6e+05 =

4e+05 —

2e+05 =

0e+00 = "

3e+05 =

2e+05 =

1e+05 =

0e+00 = "

Subdomain Max Size: 50
Vector Length: AVX

II Vec Ratio

20.9%
I__A
Subdomaln Max Slze. 200
Vector Length: AVX
73.8%

Subdomam Max Slze. 500
Vector Length: AVX

Vec Ratio

Vec Ratio
85.4%

Color S|ze

Subdomain Max Size: 50
Vector Length: AVX512

2000000 —
1500000 Vec Ratio
1000000 — I I 0.1%
500000 — I
.-_A

Subdomam Max Slze. 200
Vector Length: AVX512

6e+05 —
Vec Ratio
4e+05 =
43.8%
2e+05 — I
| ||.. ______

0e+00 I

Subdomam Max S1ze. 500
Vector Length: AVX512

3e+05 - .
Vec Ratio
2e+05 =
66.3%
1e+05 = ‘ I||
0e+00 = II

1
60

. Not vectorlzed . Vectorized

15

SOA Longest Color Strategy :

> Poor vectorization ratio
> Probably not enough data parallelism in the data that fit
In cache...

> However the small amount of available data parallelism
is badly exploited: heuristics for large domains are not
efficient on smaller domains fitting into cache!

— Longest colors constraint the number of colors

=> \We do not need such a constraint, we want ‘long
enough’ colors only!

Ny

Ny

Ny

16

for each element E

myColor = (0, mask = 1
for each neighbor elements NE
neighborColor (= elemToColor[NE]
while (neighborColor & mask ||
colorCard{myColor] >= VEC_SIZE)

neighborColor = neighborColor >> 1
myColor++

elemToColor(E] = (mask << myColor)

colorCard[myColor]++

17

Subdomain Max Size: 50
Vector Length: SSE

5e+06 .
4e+06 Vec Ratio
3e+06 = 79 3%
2e+06
1e+06 —
0e+00
1 1 1 1
2 4 6 8
Subdomain Max Size: 200
Vector Length: SSE
6e+06
Vec Ratio
95.9%

) N »
@ ®)
+ + +
o o o
)))
1 1 1

—
T T T T
2 4 6 8

Subdomain Max Size: 500
Vector Length: SSE

Number of elements

6e+06 —
Vec Ratio
4e+06 —
98.1%
2e+06 —

0e+00 —— T

Subdomain Max Size: 50
Vector Length: AVX

Vec Ratio
23.1%

2000000 =

1500000 —
1000000 —
500000 —

Subdomam Max Slze: 200
Vector Length: AVX

Vec Ratio
83.1%

4e+06 —

2e+06 —

| e e
0e+00 T T F F
2 4 6 8

Subdomain Max Size: 500
Vector Length: AVX

6e+06
Vec Ratio
4e+06
91.8%
2e+06 —
06:+00 == mm : :
2 4 6 8
Color size

Subdomain Max Size: 50
Vector Length: AVX512

2000000 —
1500000 — Vec Ratio
1000000 — 0.1%
500000 —
o B
I I I
2 4 6 8
Subdomain Max Size: 200
Vector Length: AVX512
3e+06 7 Vec Ratio
2e+06 — 546%
1e+06 —

0e+00 _—---...
T T T T
2 4 6 8

Subdomain Max Size: 500
Vector Length: AVX512

5e+06

4e+06 - Vee Ratio
3e+06 772%

2e+06 —

1e+06 —

06+00 == ———

T T T
2 4 6 8

Il Not vectorized [l Vectorized

Number of elements

1000000 =

500000 =

Bounded

=> ~10% improvement

on the partition size fitting into

cache.

Subdomain Max Size: 50
Vector Length: SSE

Subdomain Max Size: 50
Vector Length: AVX

Vec Ratio
I I 20.9%
I.-_A

00000 = 2000000 =

Vec Ratio 5,0,

69.6% 1000000 -

I 500000 —
.-_A

Subdomam Max Slze. 200

00000 =

6e+05 6e+05 —

Vec Ratio Vec Ratio

Vector Length: SSE Vector Length: AVX
90.9% “ 73.8%
||.. ,,,,, ser00 II ||.. _____

|I“
20 20

Subdomam Max Size: 500
Vector Length: SSE

4e+05 = 4e+05 —

2e+05 = 2e+05 =

0e+00 =

Vector Length: AVX

3e+05 = 3e+05 =

Vec Ratio

| " 94.9%
||| |||||l i
20

Vec Ratio
85.4%

2e+05 = 2e+05 —

1e+05 = 1e+05 —

0e+00 = t 0e+00 = t

Color S|ze

Subdomam Max Slze. 200

Subdomam Max Size: 500

Subdomain Max Size: 50
Vector Length: AVX512

2000000 =
Vec Ratio
I I 0.1%
I.-_A

Subdomam Max Slze. 200
Vector Length: AVX512

Subdomam Max Slze. 500
Vector Length: AVX512

Vec Ratio
h 66.3%
||||||l|l| o

. Not vemorlzed . Vectorlzed

1500000 =
1000000 =

500000 =

6e+05

Vec Ratio
43.8%

4e+05 ~

2e+05 =

0e+00 =

3e+05 =

2e+05 ~

1e+05 =

0e+00 =

Sequential loop of vectors, no need for a parallel loop
= Permutation allows to forget about the colors,
=> Align the data dependencies on iteration frontier
= Just remember offset for the next vector size.

=> Future work: mix vector size using mask/padding

for each color C in a leaf
vec_for elem in [0:C_SIZESVEC _SIZE]
seq_for elem in [C_SIZESVEC_SIZE:C_SIZE]

Without reordering

vec_for elem in [Q:offset]
seq_for elem in [offset:LEAF_SIZE]

With reordering

oooooooooooo

;AVX'looﬁ . . Seq loop T
Offset Vec loop

10% shorter with bounded

N "

. 'seq
Oftset loop

19

Results: Vectorization & ® CoLOC

& With increasing vector size we need increasing
dataset size to be efficient on unstructured data
— But cache size per core is decreasing
— And vector size is getting larger
=> Can'’t run efficiently in L1 with vectors on current phi !!!
(and L2 on phi ®...)
& The current gather operations require large
compute intensity to be overlapped
= Some loops are faster not being vectorized

20

N > coLoc

Data Locality

/ Pure coloring \

Data Unstructuredness Data Parallelism

21

N > coLoc

Table 1. Vectorization expected speed-ups for a leaf size of 200.
vecSize 2 3 4 5 8 (native) 16

Bounded vecRatio 096 090 083 0.76 0.55 0.02
Expected_SU 127 136 138 1.37 1.27 1,01

Longest vecRatio 0.91 0.74 0.44
Expected SU 1.25 1.32 1.20

22

Hardware trade-off & ® CoLOC

— Best HW vector size is application dependent

— The choice of the architect is a tradeoff based on
benchmarks
=Co-design is required
=Provide him with your proto-apps !
— Larger/faster memory

* Not the actual trend, at least not smaller and slower would be
good

* However the bandwidth is increasing, but not all the
algorithms can beneficiate from it. (e.g. Massive SPMD
model like in GPU programming)

23

Back to the 70’s & ® COoLOC

Ny

> Yes it already existed in the past
> Long vector machines are back...

> Actually it is more accurate to say: high ratio vector
length/memory machines are back

> Predicates, masks, complex vector operations,
divergence, N1/2...

Ny

Ny

Ny

Ny

> New branch, taking a new direction from a solid basis of
previous work => we are not doomed!

24

15 - - Ideal scaling
D&C Hybrid (Cilk)
- -~ D&C(Cik)y
S -=- Ref Improved (MPI)
|
3 == Ref (MPI
3 <« Coloring (Cilk)
7
5
0
8
Number of Cores
250
- - ldeal scaling. e
200 - D&C Hybrid (Cilk)
D L 6 B e

:I) 150 == Ref Improved (MPI) P
B 5« Coloring (Cilk) v ZALITAS L L R
8
%)

60

120
Number of Cores

180

240

éieai scalin

)&C Hybrid (Cilk)

&C (Cilk)

128 192 256
Number of Cores

1000 _
--ldealscaling L
750 ~o- D&C (Cilk) .- -
a == Ref Improved (MPI) _J:: 7777777777777777777777777777777777777
2
T 500 - -
@ 73
) -7
Q- ,,,,,,,,,,,,,,,,, ;,f, ,,,
) -
250 /
/I——"'— r e
0 |
1
4 120 240 480 720 960
Number of Cores

25

New OpenMP version of DC_lib:

1.0

0.8

Parallel Efficiency
o
[}

o
IS

0.2

0.0

Significant difference on the physical cores
Larger overhead of the OpenMP runtime?
Hyper-threads compensate on larger core

However not really promising for the future
Tests on BlueGene coming soon!

S
~_
T

240

60

32

-

240

N
o

o
©

<
o

IS

o

Parallel Efficiency

<
N

<
o

Number of Cores

120
Number of Cores

960

26

The OpenMP version of DC_lib

1000

== D&C (Cilk)

,,,,, - - Ideal scaling

4 120

1.0 -
77777777777777 \
%)
c 0.8
B [
2
T 06—
o
= 0-4
5 - - Ideal scaling,
o
0.2 ~ D&C (Cilk)
""" — D&C (OpenmpP)
0.0
4 120 240 480 720

Number of Cores

240

480 720 960

Number of Cores

27

As for future work & ® CoLOC

& |In exa2ct and coloc, all our developments are open
source

— Coria Yales2 for load balancing of chemistry and
lagrangian particles (exa2ct)

— More experiments on the proto-app of the multigrid
solver of DLR Tau provided by Tsystem (exa2ct)

— Experimenting GASPI RMA async one sided and
compare to MPI3.0 in distributed DC version of Mini-
FEM + solver (Coloc)

— FMM with async one sided, efficient data placement
and load balancing, and efficient shared memory
parallelization (many-core requirement) (Coloc)

28

¢ Other requests and ideas are welcome! ;)

29

