
Strategies for Next Generation HPC Applications and Systems

Michael A. Heroux
Scalable Algorithms Department

Sandia National Laboratories

SNL Collaborators: Erik Boman, Marc Gamell, Carter Edwards, James, Elliot, Mark
Hoemmen, Siva Rajamanickam, Keita Teranishi, Christian Trott

IDEAS Project: Lois McInnes, David Bernholdt, David Moulton, Hans Johansen

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

• Background.
• “Easy” and “Hard”.
• SW Engineering and Productivity.
• Application Design and Productivity.
• Productivity Incentives.

2

The work ahead of us: Threads and vectors
MiniFE 1.4 vs 2.0 as Harbingers

5.0$ 4.2$ 3.8$ 3.4$
2.4$ 1.3$ 1.5$ 1.3$

33.6$

23.8$
18.8$ 18.2$

32.1$
54.9$

46.6$

0.0$

10.0$

20.0$

30.0$

40.0$

50.0$

60.0$

70.0$

80.0$

90.0$

100.0$

V$1.4/SB$ V$1.4/MIC4Vec$ V$2.0/MIC4NoV$ V$2.0/MIC4Vec$

Ti
m
e%
(s
ec
)%%

Version/System%

MiniFE:%Setup%vs%Solver%Speedup%

Setup$

Solve::SpMV$

Solve::DOT$

Solve::AXPY$

600.0

561

¨ Typical MPI-only run:
¤ Balanced setup vs

solve
¨ First MIC run:

¤ Thread/vector solver
¤ No-thread setup

¨ V 2.0: Thread/vector
¤ Lots of work:

n Data placement, const
/restrict declarations,
avoid shared writes, find
race conditions, …

¤ Unique to each app

3

3

“Easy” Work in Progress

• Thread-scalable algorithms:
– Turning out to be feasible.
– Clever ideas: Fast-ILU (Chow, Anzt, Rajamanickam, etc.)
– Lots to do, but steady progress
– Much evidence in today’s talks.

• Current Thread Programming Environments:
– C++, OpenMP, others: Working.
– Runtimes: Still a lot of work, but progress.

• Lots to do, but community is focused.

• MPI+X based subdomain solvers
– Decouple the notion of one MPI rank as one subdomain: Subdomains can span

multiple MPI ranks each with its own subdomain solver using X or MPI+X
– Epetra based solver, Tpetra interface still being developed

• Trilinos Solver Factory a big step forward to get this done (M. Hoemmen)
• Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism

– Basker : LU or ILU (t) factorization (J. Booth)
– Tacho: Incomplete Cholesky - IC (k) (K. Kim)
– Fast-ILU: Fast-ILU factorization for GPUs (A. Patel)

• KokkosKernels: Coloring based Gauss-Seidel (M. Deveci), Triangular Solves
• Experimental code base under active development.

Trilinos/ShyLU and Subdomain Solvers : Overview
Led by Siva Rajamanickam, Sandia

TachoBasker FAST-
ILUKLU2

Amesos2 Ifpack2

ShyLU

KokkosKernels –
SGS, Tri-Solve (HTS)

More “Easy” Work in Progress

• Resilience:
– CPR: Compression, NVRAM, Offloading.

• Steady progress, long life extension.
– LFLR: Good progress with ULFM.

• Example Paper: Local Recovery And Failure Masking For Stencil-
based Applications At Extreme Scales

– Marc Gamell, Keita Teranishi, Michael A. Heroux, Jackson Mayo, Hemanth Kolla, Jacqueline Chen,
Manish Parashar

http://sc15.supercomputing.org/schedule/event_detail?evid=pap682

• System-level error detection/correction.
• Many unexploited options available. Talk with Al Gara, Intel.

• Conjecture:
– System developers will not permit reduced reliability until the

user community produces more resilient apps.

“Hard” Work

• Billions (yes, billions) SLOC of encoded science &
engineering.

• Challenge:
– Transfer, refactor, rewrite for modern systems.
– Do so with modest investment bump up.
– Deliver science at the same time.
– Make the next disruption easier to address.

PRODUCTIVITY
BETTER, FASTER, CHEAPER: PICK ALL THREE

8

https://www.whitehouse.gov/sites/default/files/microsites/ostp/nsci_fact_sheet.pdf

From the NSCI Announcement (Fact sheet):

Productivity
Better, Faster, Cheaper: Pick all three

9

Confluence of trends

• Fundamental trends:
– Disruptive HW changes: Requires thorough algorithm/code

refactoring
– Demands for coupling: Multiphysics, multiscale

• Challenges:
– Need refactorings: Really, continuous change
– Modest app development funding: No monolithic apps
– Requirements are unfolding, evolving, not fully known a priori

• Opportunities:
– Better design and SW practices & tools are available
– Better SW architectures: Toolkits, libraries, frameworks

• Basic strategy: Focus on productivity

10

Interoperable Design of Extreme-
scale Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential of
extreme- scale computing, through a new interdisciplinary and agile
approach to the sc ientific software ecosystem.

Objectives
Address confluence of trends in hardware and

increasing demands for predictive multiscale,
multiphysics simulations.

Respond to trend of continuous refac toring with
efficient agile software engineering
methodologies and improved software design.

Approach
ASCR/BER partnership ensures delivery of both crosscutting methodologies and

metrics with impact on real application and programs.
Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)
BER Lead: David Moulton (LANL)
Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)

Integration and synergistic advances in three communities deliver scientific
productivity; outreach establishes a new holistic perspective for the broader
scientific community.

Impact on Applications & Programs
Terrestrial ecosystem use cases tie IDEAS to modeling and
simulation goals in two Science Focus Area (SFA) programs
and both Next Generation Ecosystem Experiment (NGEE)
programs in DOE Biologic and Environmental Research
(BER).

Software
Productivity for
Extreme-Scale

Science
Methodologies
for Software
Productivity

Use Cases :
Terrestrial
Modeling

Extrem e-Sca le
Sci enti fic Softwa re
Development Ki t

(xSDK)

11

www.ideas-productivity.org

IDEAS project structure and interactions
12

IDEAS: Interoperable Design of Extreme-scale
Application Software

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)
BER Lead: J. David Moulton (LANL)

Executive Advisory Board
John Cary (Tech-X)
Mi ke Glass (SNL)

Susan Hubbard (LBNL)
Doug Kothe (ORNL)

Sandy Landsberg (DOD)
Paul Messi na (ANL)

DOE Program Managers

ASCR: Thomas Ndousse-Fetter
BER: Paul Bayer, David Lesmes

ASCR Math & CSExascale Co-Design ALCF

SciDACExascale Roadmap NERSC OLCF

DOE Extreme-scale Programs DOE Computing Facilities

SFAs

BER Terrestrial Programs

CLM

NGEE

ACME

Extreme-Scale Scientific Software
Development Kit

Lead: Lois Curfman McInnes (ANL)
Alicia Klinvex (SNL)
Jed Brown (ANL)
Irina Demeshko (SNL)
Anshu Dubey (LBNL)
Sherry Li (LBNL)
Vijay Mahadevan (ANL)
Daniel Osei-Kuffuor (LLNL)
Barry Smith (ANL)
Mathew Thomas (PNNL)
Ulr ike Yang (LLNL)

Methodologies for
Software Productivity

Lead: Mike Heroux (SNL)
Roscoe Bartlett (ORNL)
Todd Gamblin* (LLNL)
Christos Kartsaklis (ORNL)
Pat McCormick (LANL)
Sri Hari Krishna Narayanan (ANL)
Andrew Salinger* (SNL)
Jason Sarich (ANL)
Dali Wang (ORNL)
Jim Willenbring (SNL)

Outreach and Community
Lead: David Bernholdt (ORNL)
Katie Antypas* (NERSC)
Lisa Childers* (ALCF)
Judy Hill* (OLCF)

Crosscutting Lead: Hans Johansen (LBNL)

* Liaison
*1 *2 *3: Leads: Use Cases 1, 2, 3

BER Use Cases
Lead: J. David Moulton (LANL)
Carl Steefel (LBNL) *1
Scott Painter (ORNL) *2
Reed Maxwell (CSM) *3
Glenn Hammond (SNL)
Tim Scheibe (PNNL)
Laura Condon (CSM)
Ethan Coon (LANL)
Dipankar Dwivedi (LBNL)
Jeff Johnson (LBNL)
Eugene Kikinzon (LANL)
Sergi Molins (LBNL)
Steve Smith (LLNL)
Carol Woodward (LLNL)
Xiaofan Yang (PNNL)

Sept 2015

Use cases: Multiscale, multiphysics
representation of watershed dynamics

• Use Case 1: Hydrological and biogeochemical
cycling in the Colorado River System

• Use Case 2: Thermal hydrology and carbon
cycling in tundra at the Barrow Environmental
Observatory

• Use Case 3: Hydrologic, land surface, and
atmospheric process coupling over the
continental United States

• Leverage and complement existing SBR and TES
programs:

– LBNL and PNNL SFAs
– NGEE Arctic and Tropics

• General approach:
– Leverage existing open source application codes
– Improve software development practices
– Targeted refactoring of interfaces, data structures,

and key components to facilitate interoperability
– Modernize management of multiphysics integration

and multiscale coupling

13

IDEAS interconnections
14

• Use cases: Drive efforts. Traceability from all
efforts
– But generalized for future efforts

• Methodologies (“HowTo”) for SWP:
– Infrastructure, testing, porting, refactoring, portability, etc.

– Workflows, lifecycles: Document and formalize. Identify best
practices

• xSDK: frameworks + components + libraries
– Build apps by aggregation and composition

• Outreach: Foster communication, adoption, interaction
• First of a kind: Focus on software productivity

Software
Productivity fo r
Extreme-Scale

Science
Methodologies
for Software
Productivity

Use Cases:
Terrestrial
Modeling

Extreme-Scale
Scientific Software
Development Kit

(xSDK)

SW Engineering & Productivity

15

Scientific Software Engineering

“A scientist builds in order to learn;
an engineer learns in order to build.”

- Fred Brooks

Scientist: Barely-sufficient building.
Engineer: Barely-sufficient learning.

Both: Insufficiency leads to poor SW.

Software Engineering and HPC:
Efficiency vs Other Quality Metrics

Source:
Code Complete
Steve McConnell

17

TriBITS: One Deliberate Approach to SE4CSE
Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, …

Goal: “Self-sustaining” software

• Allow Exploratory Research to Remain Productive:
Minimal practices for basic research in early phases

• Enable Reproducible Research: Minimal software
quality aspects needed for producing credible
research, researchers will produce better research that will stand a better chance of being
published in quality journals that require reproducible research

• Improve Overall Development Productivity: Focus on the right SE practices at the
right times, and the right priorities for a given phase/maturity level, developers work more
productively with acceptable overhead

• Improve Production Software Quality: Focus on foundational issues first in early-
phase development, higher-quality software will be produced as other elements of
software quality are added

• Better Communicate Maturity Levels with Customers: Clearly define maturity levels
so customers and stakeholders will have the right expectations

TriBITS Lifecycle Maturity
Levels
0: Exploratory
1: Research Stable
2: Production Growth
3: Production Maintenance
-1: Unspecified Maturity

G
oa

ls

.

18

End of Life?

Long-term maintenance and end of life issues for Self-Sustaining Software:
• User community can help to maintain it (e.g., LAPACK).
• If the original development team is disbanded, users can take parts they

are using and maintain it long term.
• Can stop being built and tested if not being currently used.
• However, if needed again, software can be resurrected, and continue to

be maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing
risk and sustaining long lifetime.

19

19

Addressing existing Legacy Software

• One definition of “Legacy Software”: Software that is too far from away
from being Self-Sustaining Software, i.e:

– Open-source
– Core domain distillation document
– Exceptionally well testing
– Clean structure and code
– Minimal controlled internal and external dependencies
– Properties apply recursively to upstream software

• Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to
such software?

• Answer: Grandfather them into the TriBITS Lifecycle Model by applying
the Legacy Software Change Algorithm.

20

20

Grandfathering of Existing Packages

Agile Legacy Software Change Algorithm:
1. Identify Change Points
2. Break Dependencies
3. Cover with Unit Tests
4. Add New Functionality with Test Driven Development (TDD)
5. Refactor to removed duplication, clean up, etc.
Grandfathered Lifecycle Phases:
1. Grandfathered Research Stable (GRS) Code
2. Grandfathered Production Growth (GPG) Code
3. Grandfathered Production Maintenance (GPM)

Code

NOTE: After enough iterations of the Legacy
Software Change Algorithm the software may
approach Self-Sustaining software and be able to
remove the “Grandfathered” prefix.

Cost per new feature

Legacy
Code

Grandfathered
Production

Maintenance

Production
Maintenance

21

21

Message to This Audience

Write tests now, while (or before) writing
your intended production software.

IDEAS ‘What is’ and ‘How to’ docs
23

• Motivation: Scientific software teams have a
wide range of levels of maturity in software
engineering practices

– Baseline survey of xSDK and BER Use Case
teams

• Approach:
– ‘What Is’ docs: 2-page characterizations of

important software project topics
– ‘How To’ docs: brief sketch of best practices

• Emphasis on ``bite-sized'' topics enables CSE
software teams to consider improvements at a
small but impactful scale.

• Initial emphasis:
– What is CSE Software Productivity?
– What are Software Testing Practices?
– How to Add and Improve Testing in Your CSE

Software Project
• Topics in progress:

– Refactoring tools and approaches
– Best practices for using interoperable libraries
– Designing for performance portability
– Etc.

Impact: Provide baseline nomenclature and
foundation for next steps in SW productivity
and SW engineering for CSE teams

https://ideas-productivity.org/resources/howtos

Managing issues:
Fundamental software process24

• Issue: Bug report, feature request
• Approaches:

– Short-term memory, office notepad
– ToDo.txt on computer desktop (1 person)
– Issues.txt in repository root (small co-located team)
– …
– Web-based tool + Kanban (distributed, larger team)
– Web-based tool + Scrum (full-time dev team)

• IDEAS project:
– Jira Agile + Confluence: Turnkey web platform (ACME too)
– Kanban: Simplest of widely known Agile SW dev processes

Informal, less
training

Formal, more
training

Kanban principles
25

• Limit number of “In Progress” tasks
• Productivity improvement:

– Optimize “flexibility vs swap overhead” balance. No
overcommitting.

– Productivity weakness exposed as bottleneck. Team must
identify and fix the bottleneck.

– Effective in R&D setting. Avoids a deadline-
based approach. Deadlines are dealt with in a
different way.

• Provides a board for viewing and managing issues

IDEAS Confluence, Jira Agile, Kanban

26
Developer Guide, on
Confluence site

Kanban Board, on
Jira site.
Four columns:
- To Do
- Selected
- In Progress
- Done

Message to This Audience

Improve your issue tracking habits:
•Nothing -> Desktop/todo.txt
•Desktop/todo.txt -> clone/todo.txt
•clone/todo.txt -> Git Issues
•Git Issues -> Git Issues + Kanban

or Jira + Kanban

Three Application Design Strategies
for Productivity & Sustainability

28

Strategy 1: Array and Execution
Abstraction

29

Multi-dimensional Dense Arrays

• Many computations work on data stored in multi-dimensional
arrays:
– Finite differences, volumes, elements.
– Sparse iterative solvers.

• Dimension are (k,l,m,…) where one dimension is long:
– A(3,1000000)
– 3 degrees of freedom (DOFs) on 1 million mesh nodes.

• A classic data structure issue is:
– Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) … or
– By node: A(1,1), A(1,2), …

• Adherence to raw language arrays forces a choice.
• Physics i,j,k should not dictate storage i,j,k.

30

Kokkos: Execution and memory space abstractions

• What is Kokkos:
– C++ (C++11) template meta-programming library, part of (and not) Trilinos.
– Compile-time polymorphic multi-dimensional array classes.
– Parallel execution patterns: For, Reduce, Scan.
– Loop body code: Functors, lambdas.
– Tasks: Asynchronous launch, Futures.

• Available independently (outside of Trilinos):
– https://github.com/kokkos/

• Getting started:
– GTC 2015 Content:

• http://on-demand.gputechconf.com/gtc/2015/video/S5166.html
• http://on-demand.gputechconf.com/gtc/2015/presentation/S5166-H-

Carter-Edwards.pdf
– Programming guide doc/Kokkos_PG.pdf.

31

Message to This Audience

Consider an array/patterns library, e.g.,
Kokkos.

Strategy 2: Application Composition

33

Extreme-Scale
Scientific
Software
Ecosystem

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions.
• Hierarchical organization.
• Multiscale/multiphysics coupling.

34

xSDK focus
35

• Common configure and link capabilities
– xSDK users need full and consistent access to all xSDK

capabilities
– Namespace and version conflicts make simultaneous

build/link of xSDK difficult
– Determining an approach that can be adopted by any library

or components development team for standardized
configure/link processes

• Library interoperability
• Designing for performance portability

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Ki t (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Standard xSDK package installation interface
36 Motivation: Obtaining, configuring, and

installing multiple independent software
packages is tedious and error prone.
• Need consistency of compiler (+version, options),

3rd-party packages, etc.

Approach: Define a standard xSDK package
installation interface to which all xSDK
packages will subscribe and be tested
Accomplishments:
• Work on implementations of the standard

by the hypre, PETSc, SuperLU, and
Trilinos developers

• PETSc can now use the “scriptable”
feature of the installers to simultaneously
install hypre, PETSc, SuperLU, Trilinos
with consistent compilers and ‘helper’
libraries.

Impact: Foundational step toward
seamless combined use of xSDK
libraries, as needed by BER use
cases and other multiphysics apps

xSDK Build Example

Enabling Interoperable Biogeochemistry with
Alquimia

37

Several geochemistry libraries are well established in the community making
geochemistry ideal to explore componentization and interface design. Alquimia is
an interface library, and does not perform any reaction calculations.

¨ Alquimia currently assumes reactive
transport uses operator-splitting.

¨ Fully-implicit reactive transport support is
being developed in collaboration with
IDEAS.

¨ Assists in enforcing geochemical conditions
(speciation) for transport boundary
conditions

¨ Alquimia can facilitate benchmarking of
geochemical capabilities in existing codes.

¨ Geochemistry libraries, such as PFLOTRAN
and CrunchFlow, have implemented
interfaces to Alquimia.

Alquimia is open source, https://bitbucket.org/berkeleylab/alquimia

Schematic of the Alquimia interface library
providing uniform access to PFLOTRAN and
CrunchFlow geochemistry in Amanzi

TRILINOS COMMUNITY 2.0

38

Trilinos Community 2.0
• GitHub, Atlassian:

– Open source SW development, tools platforms.
– Workflows for high-quality community SW product

development.
• Trilinos value proposition:

– Included these same things, but are re-evaluating.
– Moving to GitHub.
– Supporting dual-mode package model.

• New types of Trilinos packages:
– Internal: Available only with Trilinos (traditional definition).
– Exported: Developed in Trilinos repository, available

externally.
– Imported: Developed outside of Trilinos, available internally.

39

Trilinos Community 2.0
• Case studies:

– TriBITS: Was an internal package, now external.
– DTK: Has always been external.
– Kokks: Was internal. Is now developed externally, available

internal.
– Move to GitHub: Several packages splitting off.

• Issues to Resolve:
– Package inclusion policies: Define for each package type.
– Quality criteria: Contract between Trilinos and packages.
– Workflows: Development, testing, documentation, etc.
– Trilinos on GitHub: Almost there.
– Trilinos Value Proposition: Re-articulate Trilinos Strategic Goals

implications.

40

Common Look-and-feel Expectations

• Consistent data management practices.
• Consistent API styles.
• Testing and other quality metric thresholds, e.g.,

coverity.
• What else?

41

xSDK Minimum Compliance
Requirements:

42

• M1. Each xSDK compliant package must support the the standard
xSDK cmake/configure options.

• M2. Each xSDK package must provide a comprehensive test suite
that can be run by users and does not require the purchase of
commercial software

• M3. Each xSDK compliant package that utilizes MPI must restrict
its MPI operations to MPI communicators that are provided to it and
not use directly MPI_COMM_WORLD.

• M4. Each package team must do a ‘best effort’ at portability to key
architectures, including standard Linux distributions, GNU, Clang,
vendor compilers, and target machines at ALCF, NERSC, OLCF.
Apple Mac OS and Microsoft Windows support are recommended.

• M5. Each package team must provide a documented, reliable way
to contact the development team; this may be by email or a
website. The package teams should not require users to join a
generic mailing list (and hence receive irrelevant email they must
wade through) in order to report bugs or request assistance.

• M6 – 11…

https://ideas-productivity.org/resources/xsdk-docs: Open for public comment.

xSDK Recommended Compliance
Requirements:

43

• R1. It is recommended that each package have a public
repository, for example at github or bitbucket, where the
development version of the package is available. Support
for taking pull requests is also recommended.

• R2. It is recommend that all libraries be tested with
valgrind for memory corruption issues while the test suite
is run.

• R3. It is recommended that each package adopt and
document a consistent system for propagating/returning
error conditions/exceptions and provide an API for
changing the behavior.

• R4. It is recommended that each package free all system
resources it has acquired as soon as they are no longer
needed.

Docker (about which I know little)

Typical Trilinos Cmake Script (edison)

cmake \
-D MPI_CXX_COMPILER="CC" \
-D MPI_C_COMPILER="cc" \
-D MPI_Fortran_COMPILER="ftn" \
-D Teuchos_ENABLE_STACKTRACE:BOOL=OFF \
-D Teuchos_ENABLE_LONG_LONG_INT:BOOL=ON \
-D Trilinos_ENABLE_Tpetra:BOOL=ON \
-D Tpetra_ENABLE_TESTS:BOOL=ON \
-D Tpetra_ENABLE_EXAMPLES:BOOL=ON \
-D Tpetra_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \
-D Teuchos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \
-D TPL_ENABLE_MPI:BOOL=ON \
-D CMAKE_INSTALL_PREFIX:PATH="$HOME/opt/Trilinos/tpetraEval" \
-D BLAS_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \
-D BLAS_LIBRARY_NAMES="sci" \
-D LAPACK_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \
-D LAPACK_LIBRARY_NAMES="sci" \
-D CMAKE_CXX_FLAGS="-O3 -ffast-math -funroll-loops" \
\
..

WebTrilinos

Trilinos usage via Docker

• WebTrilinos Tutorial
– https://hub.docker.com/r/sjdeal/webtrilinos

• http://johntfoster.github.io/posts/peridigm-without-
building-via-Docker.html
– docker pull johntfoster/trilinos
– docker pull johntfoster/peridigm
– docker run --name peridigm0 -d -v `pwd`:/output

johntfoster/peridigm \
Peridigm fragmenting_cylinder.peridigm

– Etc…

47

Message to This Audience

Consider what software ecosystem(s)
you want your software to be part of and
use.

Strategy 3: Toward a New
Application Architecture

49

Classic HPC Application Architecture

¨ Logically Bulk-Synchronous,
SPMD

¨ Basic Attributes:
¤ Halo exchange.
¤ Local compute.
¤ Global collective.

¨ Strengths:
¤ Portable to many specific system

architectures.
¤ Separation of parallel model (SPMD) from

implementation (e.g., message passing).
¤ Domain scientists write sequential code

within a parallel SPMD framework.
¤ Supports traditional languages (Fortran, C).
¤ Many more, well known.

¨ Weaknesses:
¤ Not well suited (as-is) to emerging manycore

systems.
¤ Unable to exploit functional on-chip parallelism.
¤ Difficult to tolerate dynamic latencies.
¤ Difficult to support task/compute heterogeneity.

Subdomain
1 per MPI process

50

Task-centric/Dataflow Application
Architecture

¨ Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

¨ Task: Functionality defined on a patch.
¨ Many tasks on many patches.

¨ Strengths:
¤ Portable to many specific system

architectures.
¤ Separation of parallel model from

implementation.
¤ Domain scientists write sequential code

within a parallel framework.
¤ Supports traditional languages (Fortran, C).
¤ Similar to SPMD in many ways.

…

…

… Patch
Many per MPI process

Data Flow
Dependencies

¨ More strengths:
¤ Well suited to emerging manycore

systems.
¤ Can exploit functional on-chip

parallelism.
¤ Can tolerate dynamic latencies.
¤ Can support task/compute

heterogeneity.

51

Task on a Patch

• Patch: Small subdomain or subgraph.
– Big enough to run efficiently once its starts execution.

• CPU core: Need ~1 millisecond for today’s best runtimes (e.g. Legion).
• GPU: Give it big patches. GPU runtime does manytasking very well on its

own.

• Task code (Domain scientist writes most of this code):
– Standard Fortran, C, C++ code.
– E.g. FEM stiffness matrix setup on a “workset” of elements.
– Should vectorize (CPUs) or SIMT (GPUs).
– Should have small thread-count parallel (OpenMP)

• Take advantage of shared cache/DRAM for UMA cores.
– Source line count of task code should be tunable.

• Too coarse grain task:
– GPU: Too much register state, register spills.
– CPU: Poor temporal locality. Not enough tasks for latency hiding.

• Too fine grain:
– Too much overhead or
– Patches too big to keep task execution at 1 millisec.

52

Portable Task Coding Environment

• Task code must run on many types of cores:
– Standard multicore (e.g., Haswell).
– Manycore (Intel PHI, KNC, KNL).
– GPU (Nvidia).

• Desire:
– Write single source.
– Compile phase adapts for target core type.
– Sounds like what?

• Kokkos (and others: OCCA, RAJA, …):
– Enable meta programming for multiple target core architectures.

• Future: Fortran/C/C++ with OpenMP 4:
– Limited execution patterns, but very usable.
– Like programming MPI codes today: Déjà vu for domain scientists.

• Other future: C++ with Kokkos/OCCA/RAJA derivative in std namespace.
– Broader execution pattern selection, more complicated.

53

Task Management Layer

• New layer in application and runtime:
– Enables (async) task launch: latency hiding, load balancing.
– Provides technique for declaring inter-task dependencies:

• Data read/write (Legion).
– Task A writes to variable x, B depends on x. A must complete before B starts.

• Futures:
– Explicit encapsulation of dependency. Task B depends on A’s future.

• Alternative: Explicit DAG management.
– Aware of temporal locality:

• Better to run B on the same core as A to exploit cache locality.
– Awareness of data staging requirements:

• Task should not be scheduled until its data are ready:
– If B depends on remote data (retrieved by A).

– Manage heterogeneous execution: A on Haswell, B on PHI.
– Resilience: If task A launched task B, A can relaunch B if B fails or times

out.
• What are the app vs. runtime responsibilities?
• How can each assist the other?

54

Open Questions for Task-Centric/Dataflow
Strategies

• Functional vs. Data decomposition.
– Over-decomposition of spatial domain:

• Clearly useful, challenging to
implement.

– Functional decomposition:
• Easier to implement. Challenging to

execute efficiently (temporal locality).

• Dependency specification
mechanism.

– How do apps specify inter-task
dependencies?

– Futures (e.g., C++, HPX), data
addresses (Legion), explicit (Uintah).

• Roles & Responsibilities: App vs Libs
vs Runtime vs OS.

• Interfaces between layers.
• Huge area of R&D for many years.

55

Data challenges:
§ Read/write functions:

§ Must be task compatible.
§ Thread-safe, non-blocking, etc.

§ Versioning:
§ Computation may be executing across

multiple logically distinct phases (e.g.
timesteps)

§ Example: Data must exist at each grid
point and for all active timesteps.

§ Global operations:
§ Coordination across task events.
§ Example: Completion of all writes at a

time step.

55

Execution Policy for Task Parallelism

• TaskManager< ExecSpace > execution policy
– Policy object shared by potentially concurrent tasks

TaskManager<...> tm(exec_space , ...);
Future<> fa = spawn(tm , task_functor_a); // single-thread task
Future<> fb = spawn(tm , task_functor_b);

– Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N) , functor_c);
Future<value_type> fd = spawn_reduce(tm.team(N,M) , functor_d);
wait(tm); // wait for all tasks to complete

– Destruction of task manager object waits for concurrent tasks to
complete

• Task Managers
– Define a scope for a collection of potentially concurrent tasks
– Have configuration options for task management and scheduling
– Manage resources for scheduling queue

Kokkos/Qthread LDRD

56
56

Manytasking: A Productive Application Architecture

• Atomic Unit: Task
– Domain scientist writes code for a task.
– Task execution requirements:

• Tunable work size: Enough to efficiently use a core once scheduled.
• Vector/SIMT capabilities.

• Utility of Task-based Approach:
– Oversubscription: Latency hiding, load balancing.
– Dataflow: Task-DAG or futures.
– Resilience: Re-dispatch task from parent.
– Déjà vu for apps developers: Feels a lot like MPI programming.
– Universal portability: Works within node, across nodes.

57

Manytasking Implications

• Parallel Programming:
– Task is small thread, vector/SIMT parallel only. (Fortran can do

this, including the new Open Source LLVM-based Fortran!).
– Parallel Task management is external concern.

• Task scheduling:
– Runtime: Many tasks per node. Many tasks in-flight.
– Parallelism across node components: Really important.
– Issue: How to manage creation/completion rates.

• Resilience:
– How to coordinate task protection (parent), re-dispatch (child).

58

Message to This Audience

•Where does your software fit in a
manytasking application framework?

•How will data be pass to/from your
software?

Four Resilient Programming Models

• Relaxed Bulk Synchronous (rBSP)

• Skeptical Programming. (SP)

• Local-Failure, Local-Recovery (LFLR)

• Selective (Un)reliability (SU/R)

Toward Resilient Algorithms and Applications
Michael A. Heroux arXiv:1402.3809v2 [cs.MS]

60

Resilience & Task-centric/Dataflow

• Relaxed Bulk Synchronous (rBSP)
– Async tasking: Addresses same issues.
– “Porous barriers”:

• Tasks contribute portion to global collective, move on.
• Come back later to collect global result.

• Skeptical Programming. (SP)
– Skepticism applied at task level.
– Parent task can apply cheap validation test up child’s return.

• Local-Failure, Local-Recovery (LFLR)
– Applied at task level.
– SSD storage available for task-level persistent store.

• Selective (Un)reliability (SU/R)
– Parent task (at some level in the task graph) executes reliably.
– Children are fast, unreliable.
– Parent corrects or regenerates child task if it times out or SDC detected.

61

Creating Incentives to Improve
Productivity

62

Reproducibility & Independent Verification
Requirement

• In order to publish a paper: Someone other than the
authors must be able to reproduce the computational
results.

• Latitude in “reproduce”:
– Exactly the same numerical results?
– Exactly the same runtime?
– Close, in the opinion of an expert reviewer?

• What about:
– Access to the same computing environment?
– High end systems?

• Lots of challenges.
• But just the expectation [threat] can drive efforts…

63

Fruits of the Threat
• Source management tools: In order to guarantee that results can be

reproduced, the software must be preserved so that the exact version
used to produce results is available at a later date.

• Use of other standard tools and platforms: In order to reduce the
complexity of an environment, standard software libraries and
computing environments will be helpful.

• Documentation: Independent verification requires that someone else
understand how to use your software.

• Source code standards: Improves the ability of others to read your
source code.

• Testing: Investment in greater testing makes sense because the
software will be used by others.

• High-quality software engineering environment: If a research team
is serious about producing high-quality, reproducible and verifiable
results, it will want to invest in a high-quality SE environment to improve
team efficiency.

64

Evidence:
Cover letter excerpt from RCR candidate paper

Thank you for taking the time to consider our paper for
your journal.

XXX has agreed to undergo the RCR process should
the paper proceed far enough in the review process to
qualify. To make this easier we have preserved the
exact copy of the code used for the results
(including additional code for generating detailed
statistics that is not in the library version of the
code).

65

• TOMS RCR Initiative: Referee Data.
• Why TOMS? Tradition of real software that others use.
• Two categories: Algorithms, Research.
• TOMS Algorithms Category:

– Software Submitted with manuscript.
– Both are thoroughly reviewed.

• TOMS Research Category:
– Stronger: Previous implicit “real software” requirement is

explicit.
– New: Special designation for replicated results.

ACM TOMS

66

ACM TOMS Reproducible Computational
Results (RCR) Process

• Submission: Optional (for now) RCR option.
• Standard reviewer assignment: Nothing changes.
• RCR reviewer assignment:

– Concurrent with the first round of standard reviews
– Known to and works with the authors during the RCR

process.
• RCR process:

– Multi-faceted approach.
• Publication:

– Replicated Computational Results Designation.
– The RCR referee acknowledged.
– Review report appears with published manuscript.

67

RCR Process

• Independent replication:
– Transfer of or pointer to software given to RCR reviewer.
– Guest account, access to software on author’s system.
– Detailed observation of the authors replicating the results.

•Review of computational results artifacts:
– Results may be from a system that is no longer available.
– Leadership class computing system.
– In this situation:

• Careful documentation of the process.
• Software should have its own substantial verification process.

68

Status

• First RCR paper available:
– Editorial introduction.
– van Zee & van de Geijn, BLIS paper.
– Referee report.

• 1 RCR paper per TOMS issue.
– Hogg & Scott next.

69

Message to This Audience

Be prepared to have someone else
replicate your results.

Summary
• Thread-scalable algorithms making steady progress: “easy”.
• Resilience strategies too, and reliability will persist until we are ready:

“easy”.
• Big task: Transforming application base to new systems and beyond.
• SW engineering focus is important for HPC:

– Pursuing efficiency negatively impacts many other quality metrics.
• Productive application designs will require disruptive changes:

– Array and execution abstractions needed for portability.
– Reuse via composition is attractive (think Android/iOS, Docker environments).
– A Task-centric/dataflow app architecture is very attractive for performance portability.

• Journal, funding agency policies can provide productivity incentives:
– Replicability expectations: Better SW practices are a natural reaction.
– Funding Proposals:

• We expect data management plans.
• Can we start expecting a SW quality management plan?

71

Final Thought: Commitment to Quality

Canadian engineers' oath (taken from Rudyard Kipling):

My Time I will not refuse;
my Thought I will not grudge;

my Care I will not deny
toward the honour, use,

stability and perfection of
any works to which I may be

called to set my hand.

72

http://commons.bcit.ca/update/2010/11/bcit-engineering-graduates-earn-their-iron-rings

