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AND team

• Numerical distributed algorithm
• High performance computing: numerical methods,

asynchronous algorithms
• Wireless sensor networks: data reduction with periodic

sensors
• Security: steganography, watermarking
• Bio-informatic: ancestral virus mutation
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Motivations for predictions of scalability 1/2

• Scalability of applications:
• understand the limitation: improve the code
• chose the appropriate architecture
• access to supercomputer is expensive

• Strong scalability
• Weak scalability
• Large scale scalability is the graal
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Motivations for predictions of scalability 2/2

• Networks parameters are complex
• Making models is very difficult:

• abstraction of the code
• abstraction of the system

• Best approach: Paraver Dimemas (BSC Barcelona), trace
analysis
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Context

• Weak scaling
• Use real executions with few cores (for example 256 and

512) for measuring the communication and the computation
• Build a model that simulates the same application
• Extrapolate the performance with the model
• Evaluate the prediction
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SimGrid 1/2

• Tool for reproducible simulations
• Simulation of distributed systems composed of

heterogenous machines and networks
• Comfortable for users

• Get preliminary results from partial implementations
• Experimental campaign with thousands of runs within the

week
• Test your scientific idea, don’t fiddle with technical subtleties

(yet)
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SimGrid 2/2

• SMPI: compilation of MPI program
• Simulation within SimGrid
• With different platforms, we obtain different results
• Difficulty to choose a platform close to reality:

• processor architecture (core, cache, bus, ....)
• network, switch
• MPI implementation
• behavior of the operating system
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Our approach

• Run a real code on the machine (for example with 256 and
512 cores)

• Measure the computation and the communication times
• Build a model in SimGrid such that an excution of a smaller

problem size with the same code give similar results
• Increase the size in SimGrid
• Make prediction of the scalability by extrapolation
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Some elements

• With the weak scaling case, only the communications matter
• If the model in SimGrid is good, it should predict the

scalability of the communications
• Necessity to provide automatic procedures
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GMRES and Krylov multisplitting

• 2 codes: standard GMRES, and a multisplitting code to
solve large sparse linear systems

• Krylov multisplitting: 2 iterations method
• bloc Jacobi method like (with GMRES inside each bloc)
• Krylov residual minimization each 10 outer iterations (for ex.)

• Number of iterations dependent of the problem size
(computed with a small cluster)
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Experiments

• Architecture: Curie in CEA 80640 cores (16 cores per
processors)

• Network: Infiniband QDR
• Influence of other users is more significant when the

number of processors increases
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Experiments 1/3

x256
# of cores

Total execution 

time (s)

Measured Predicted Measured Predicted

G
M
RE

S

2 512 11,204 0.49 0.50 2.29 31.21 31.41 0.66
4 1,024 17,858 0.60 0.61 2.32 52.13 52.20 0.14
8 2,048 28,391 0.77 0.67 2.34 88.37 84.52 4.35
16 4,096 45,405 0.82 0.79 2.27 140.34 140.63 0.21
32 8,192 72,560 0.85 0.84 2.28 227.12 228.54 0.62
64 16,384 116,318 1.06 0.96 2.35 396.19 380.19 4.04

avg 2.31

M
U
LT
I

2 512 4,160 0.71 0.68 2.78 14.49 14.5 0.02
4 1,024 5,320 0.74 0.74 2.82 18.98 18.9 0.60
8 2,048 10,760 0.87 0.82 2.82 39.75 38.9 2.10
16 4,096 20,640 0.78 0.83 2.77 73.29 75.0 2.33
32 8,192 42,840 0.83 0.86 2.79 154.99 156.9 1.21
64 16,384 65,400 1.12 0.93 2.83 258.47 243.7 5.70

avg 2.80

# of 
block

# of 
iterations

Communication time 
per iteration (ms)

Computing 
time per 
iteration 

(ms)

Prediction 
error (%)
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Experiments 2/3

x512
# of cores

Total execution

time (s)

Measured Predicted Measured Predicted

G
M
RE

S

2 1,024 17,858 0.61 0.61 2.32 52.3 52.2 0.20
4 2,048 28,391 0.75 0.77 2.34 87.7 87.5 0.29
8 4,096 45,405 0.84 0.82 2.27 141.2 142.5 0.88
16 8,192 72,560 0.85 0.99 2.29 227.5 239.3 5.22
32 16,384 116,318 1.03 1.04 2.35 393.2 390.1 0.78

avg 2.31

M
U
LT
I

2 1,024 7,080 0.88 0.89 2.81 26.1 26.2 0.28
4 2,048 12,400 0.99 0.97 2.84 47.6 46.8 1.51
8 4,096 19,600 1.00 0.94 2.77 73.8 73.5 0.49
16 8,192 33,960 0.86 1.10 2.79 123.8 132.8 7.27
32 16,384 64,800 1.12 1.11 2.83 256.5 254.1 0.92

avg 2.81

# of 
block

# of 
iterations

Communication time 
per iteration (ms)

Computing 
time per 
iteration 

(ms)

Prediction 
error (%)
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Experiments 3/3

x1024
# of cores

Total execution

time (s)

Measured Predicted Measured Predicted

G
M
RE

S

2 2,048 28,391 0.73 0.71 2.341908 87.2 85.9 1.49
4 4,096 45,405 0.81 0.90 2.272290 140.1 145.8 4.01
8 8,192 72,560 0.81 0.96 2.285581 224.8 237.7 5.75
16 16,384 116,318 1.10 1.15 2.348193 400.7 402.5 0.47

avg 2.311993

M
U
LT
I

2 2,048 9,040 1.11 1.03 2.846920 35.7 34.6 3.03
4 4,096 18,480 1.11 1.12 2.751901 75.2 72.6 3.48
8 8,192 29,640 0.97 1.09 2.787762 111.5 115.4 3.50
16 16,384 46,960 1.26 1.25 2.832391 192.3 190.4 0.99

avg 2.804744

# of 
block

# of 
iterations

Communication time 
per iteration (ms)

Computing 
time per 
iteration 

(ms)

Prediction 
error (%)
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Open questions

• What about the strong scaling case?
⇒ The model should also simulate the computation

• What about irregular problems?
⇒ No idea yet

• Generalization of the approach?
⇒ We plan to make more experiments
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Conclusion

• New method to make prediction of scalability
• The code is executed in the SimGrid model
• Good results with two applications
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Perspectives

• Study the strong scaling approach
• Test with different applications:

• real applications
• bigger applications
• irregular applications
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