
Large scale performance prediction

Raphaël Couturier

FEMTO-ST, University of Franche-Comte, France

14/09/2015

Outline

1. Motivations

2. Context

3. Our approach

4. Experiments

5. Conclusion & perspectives

FEMTO-ST, University of Franche-Comte, France 2 / 18

AND team

• Numerical distributed algorithm
• High performance computing: numerical methods,

asynchronous algorithms
• Wireless sensor networks: data reduction with periodic

sensors
• Security: steganography, watermarking
• Bio-informatic: ancestral virus mutation

FEMTO-ST, University of Franche-Comte, France 3 / 18

Motivations for predictions of scalability 1/2

• Scalability of applications:
• understand the limitation: improve the code
• chose the appropriate architecture
• access to supercomputer is expensive

• Strong scalability
• Weak scalability
• Large scale scalability is the graal

FEMTO-ST, University of Franche-Comte, France 4 / 18

Motivations for predictions of scalability 2/2

• Networks parameters are complex
• Making models is very difficult:

• abstraction of the code
• abstraction of the system

• Best approach: Paraver Dimemas (BSC Barcelona), trace
analysis

FEMTO-ST, University of Franche-Comte, France 5 / 18

Context

• Weak scaling
• Use real executions with few cores (for example 256 and

512) for measuring the communication and the computation
• Build a model that simulates the same application
• Extrapolate the performance with the model
• Evaluate the prediction

FEMTO-ST, University of Franche-Comte, France 6 / 18

SimGrid 1/2

• Tool for reproducible simulations
• Simulation of distributed systems composed of

heterogenous machines and networks
• Comfortable for users

• Get preliminary results from partial implementations
• Experimental campaign with thousands of runs within the

week
• Test your scientific idea, don’t fiddle with technical subtleties

(yet)
Idea

to test
1

3 4 5

6

2

Root

End

+
Experimental

setup

1

2

5

4
3

6 +
Simulation
model

⇒
Scientific
results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10

 20

 40

 80

 160

 320

 640

 1280
 2560
 5120
 10240

ex
ec

u
ti

o
n

 t
im

e
(s

)

number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

FEMTO-ST, University of Franche-Comte, France 7 / 18

SimGrid 2/2

• SMPI: compilation of MPI program
• Simulation within SimGrid
• With different platforms, we obtain different results
• Difficulty to choose a platform close to reality:

• processor architecture (core, cache, bus,)
• network, switch
• MPI implementation
• behavior of the operating system

FEMTO-ST, University of Franche-Comte, France 8 / 18

Our approach

• Run a real code on the machine (for example with 256 and
512 cores)

• Measure the computation and the communication times
• Build a model in SimGrid such that an excution of a smaller

problem size with the same code give similar results
• Increase the size in SimGrid
• Make prediction of the scalability by extrapolation

FEMTO-ST, University of Franche-Comte, France 9 / 18

Some elements

• With the weak scaling case, only the communications matter
• If the model in SimGrid is good, it should predict the

scalability of the communications
• Necessity to provide automatic procedures

FEMTO-ST, University of Franche-Comte, France 10 / 18

GMRES and Krylov multisplitting

• 2 codes: standard GMRES, and a multisplitting code to
solve large sparse linear systems

• Krylov multisplitting: 2 iterations method
• bloc Jacobi method like (with GMRES inside each bloc)
• Krylov residual minimization each 10 outer iterations (for ex.)

• Number of iterations dependent of the problem size
(computed with a small cluster)

FEMTO-ST, University of Franche-Comte, France 11 / 18

Experiments

• Architecture: Curie in CEA 80640 cores (16 cores per
processors)

• Network: Infiniband QDR
• Influence of other users is more significant when the

number of processors increases

FEMTO-ST, University of Franche-Comte, France 12 / 18

Experiments 1/3

x256
of cores

Total execution

time (s)

Measured Predicted Measured Predicted

G
M
RE

S

2 512 11,204 0.49 0.50 2.29 31.21 31.41 0.66
4 1,024 17,858 0.60 0.61 2.32 52.13 52.20 0.14
8 2,048 28,391 0.77 0.67 2.34 88.37 84.52 4.35
16 4,096 45,405 0.82 0.79 2.27 140.34 140.63 0.21
32 8,192 72,560 0.85 0.84 2.28 227.12 228.54 0.62
64 16,384 116,318 1.06 0.96 2.35 396.19 380.19 4.04

avg 2.31

M
U
LT
I

2 512 4,160 0.71 0.68 2.78 14.49 14.5 0.02
4 1,024 5,320 0.74 0.74 2.82 18.98 18.9 0.60
8 2,048 10,760 0.87 0.82 2.82 39.75 38.9 2.10
16 4,096 20,640 0.78 0.83 2.77 73.29 75.0 2.33
32 8,192 42,840 0.83 0.86 2.79 154.99 156.9 1.21
64 16,384 65,400 1.12 0.93 2.83 258.47 243.7 5.70

avg 2.80

of
block

of
iterations

Communication time
per iteration (ms)

Computing
time per
iteration

(ms)

Prediction
error (%)

FEMTO-ST, University of Franche-Comte, France 13 / 18

Experiments 2/3

x512
of cores

Total execution

time (s)

Measured Predicted Measured Predicted

G
M
RE

S

2 1,024 17,858 0.61 0.61 2.32 52.3 52.2 0.20
4 2,048 28,391 0.75 0.77 2.34 87.7 87.5 0.29
8 4,096 45,405 0.84 0.82 2.27 141.2 142.5 0.88
16 8,192 72,560 0.85 0.99 2.29 227.5 239.3 5.22
32 16,384 116,318 1.03 1.04 2.35 393.2 390.1 0.78

avg 2.31

M
U
LT
I

2 1,024 7,080 0.88 0.89 2.81 26.1 26.2 0.28
4 2,048 12,400 0.99 0.97 2.84 47.6 46.8 1.51
8 4,096 19,600 1.00 0.94 2.77 73.8 73.5 0.49
16 8,192 33,960 0.86 1.10 2.79 123.8 132.8 7.27
32 16,384 64,800 1.12 1.11 2.83 256.5 254.1 0.92

avg 2.81

of
block

of
iterations

Communication time
per iteration (ms)

Computing
time per
iteration

(ms)

Prediction
error (%)

FEMTO-ST, University of Franche-Comte, France 14 / 18

Experiments 3/3

x1024
of cores

Total execution

time (s)

Measured Predicted Measured Predicted

G
M
RE

S

2 2,048 28,391 0.73 0.71 2.341908 87.2 85.9 1.49
4 4,096 45,405 0.81 0.90 2.272290 140.1 145.8 4.01
8 8,192 72,560 0.81 0.96 2.285581 224.8 237.7 5.75
16 16,384 116,318 1.10 1.15 2.348193 400.7 402.5 0.47

avg 2.311993

M
U
LT
I

2 2,048 9,040 1.11 1.03 2.846920 35.7 34.6 3.03
4 4,096 18,480 1.11 1.12 2.751901 75.2 72.6 3.48
8 8,192 29,640 0.97 1.09 2.787762 111.5 115.4 3.50
16 16,384 46,960 1.26 1.25 2.832391 192.3 190.4 0.99

avg 2.804744

of
block

of
iterations

Communication time
per iteration (ms)

Computing
time per
iteration

(ms)

Prediction
error (%)

FEMTO-ST, University of Franche-Comte, France 15 / 18

Open questions

• What about the strong scaling case?
⇒ The model should also simulate the computation

• What about irregular problems?
⇒ No idea yet

• Generalization of the approach?
⇒ We plan to make more experiments

FEMTO-ST, University of Franche-Comte, France 16 / 18

Conclusion

• New method to make prediction of scalability
• The code is executed in the SimGrid model
• Good results with two applications

FEMTO-ST, University of Franche-Comte, France 17 / 18

Perspectives

• Study the strong scaling approach
• Test with different applications:

• real applications
• bigger applications
• irregular applications

FEMTO-ST, University of Franche-Comte, France 18 / 18

	Motivations
	Context
	Our approach
	Experiments
	Conclusion & perspectives

