

Large scale performance prediction

Raphaël Couturier

FEMTO-ST, University of Franche-Comte, France

14/09/2015

- 1. Motivations
- 2. Context
- 3. Our approach
- 4. Experiments
- 5. Conclusion & perspectives

- Numerical distributed algorithm
- High performance computing: numerical methods, asynchronous algorithms
- Wireless sensor networks: data reduction with periodic sensors
- · Security: steganography, watermarking
- · Bio-informatic: ancestral virus mutation

Motivations for predictions of scalability 1/2

- Scalability of applications:
 - · understand the limitation: improve the code
 - · chose the appropriate architecture
 - access to supercomputer is expensive
- Strong scalability
- Weak scalability
- · Large scale scalability is the graal

Motivations for predictions of scalability 2/2

- Networks parameters are complex
- Making models is very difficult:
 - abstraction of the code
 - abstraction of the system
- Best approach: Paraver Dimemas (BSC Barcelona), trace analysis

- Weak scaling
- Use real executions with few cores (for example 256 and 512) for measuring the communication and the computation
- · Build a model that simulates the same application
- · Extrapolate the performance with the model
- Evaluate the prediction

SimGrid 1/2

- Tool for reproducible simulations
- Simulation of distributed systems composed of heterogenous machines and networks
- · Comfortable for users
 - · Get preliminary results from partial implementations
 - Experimental campaign with thousands of runs within the week
 - Test your scientific idea, don't fiddle with technical subtleties (yet)

- SMPI: compilation of MPI program
- Simulation within SimGrid
- · With different platforms, we obtain different results
- Difficulty to choose a platform close to reality:
 - · processor architecture (core, cache, bus,)
 - network, switch
 - MPI implementation
 - behavior of the operating system

- Run a real code on the machine (for example with 256 and 512 cores)
- · Measure the computation and the communication times
- Build a model in SimGrid such that an excution of a smaller problem size with the same code give similar results
- Increase the size in SimGrid
- · Make prediction of the scalability by extrapolation

- With the weak scaling case, only the communications matter
- If the model in SimGrid is good, it should predict the scalability of the communications
- · Necessity to provide automatic procedures

GMRES and Krylov multisplitting

- 2 codes: standard GMRES, and a multisplitting code to solve large sparse linear systems
- Krylov multisplitting: 2 iterations method
 - · bloc Jacobi method like (with GMRES inside each bloc)
 - · Krylov residual minimization each 10 outer iterations (for ex.)
- Number of iterations dependent of the problem size (computed with a small cluster)

- Architecture: Curie in CEA 80640 cores (16 cores per processors)
- Network: Infiniband QDR
- Influence of other users is more significant when the number of processors increases

x256	# of block	# of cores	# of iterations	Communication time per iteration (ms)		Computing time per	Total execution time (s)		Prediction
				Measured	Predicted	(ms)	Measured	Predicted	
GMRES	2	512	11,204	0.49	0.50	2.29	31.21	31.41	0.66
	4	1,024	17,858	0.60	0.61	2.32	52.13	52.20	0.14
	8	2,048	28,391	0.77	0.67	2.34	88.37	84.52	4.35
	16	4,096	45,405	0.82	0.79	2.27	140.34	140.63	0.21
	32	8,192	72,560	0.85	0.84	2.28	227.12	228.54	0.62
	64	16,384	116,318	1.06	0.96	2.35	396.19	380.19	4.04
avg 2.31									
MULTI	2	512	4,160	0.71	0.68	2.78	14.49	14.5	0.02
	4	1,024	5,320	0.74	0.74	2.82	18.98	18.9	0.60
	8	2,048	10,760	0.87	0.82	2.82	39.75	38.9	2.10
	16	4,096	20,640	0.78	0.83	2.77	73.29	75.0	2.33
	32	8,192	42,840	0.83	0.86	2.79	154.99	156.9	1.21
	64	16,384	65,400	1.12	0.93	2.83	258.47	243.7	5.70
					avg	2.80			

x512	# of block	# of cores	# of iterations	Communication time per iteration (ms)		Computing time per	Total execution time (s)		Prediction
	DIOCK			Measured	Predicted	(ms)	Measured	Predicted	CITOT (70)
GMRES	2	1,024	17,858	0.61	0.61	2.32	52.3	52.2	0.20
	4	2,048	28,391	0.75	0.77	2.34	87.7	87.5	0.29
	8	4,096	45,405	0.84	0.82	2.27	141.2	142.5	0.88
	16	8,192	72,560	0.85	0.99	2.29	227.5	239.3	5.22
	32	16,384	116,318	1.03	1.04	2.35	393.2	390.1	0.78
avg						2.31			
MULTI	2	1,024	7,080	0.88	0.89	2.81	26.1	26.2	0.28
	4	2,048	12,400	0.99	0.97	2.84	47.6	46.8	1.51
	8	4,096	19,600	1.00	0.94	2.77	73.8	73.5	0.49
	16	8,192	33,960	0.86	1.10	2.79	123.8	132.8	7.27
	32	16,384	64,800	1.12	1.11	2.83	256.5	254.1	0.92
avg									

x1024	# of block	# of cores	# of iterations	Communication time per iteration (ms)		Computing time per	Total execution time (s)		Prediction
				Measured	Predicted	(ms)	Measured	Predicted	
GMRES	2	2,048	28,391	0.73	0.71	2.341908	87.2	85.9	1.49
	4	4,096	45,405	0.81	0.90	2.272290	140.1	145.8	4.01
	8	8,192	72,560	0.81	0.96	2.285581	224.8	237.7	5.75
	16	16,384	116,318	1.10	1.15	2.348193	400.7	402.5	0.47
				2.311993					
MULTI	2	2,048	9,040	1.11	1.03	2.846920	35.7	34.6	3.03
	4	4,096	18,480	1.11	1.12	2.751901	75.2	72.6	3.48
	8	8,192	29,640	0.97	1.09	2.787762	111.5	115.4	3.50
	16	16,384	46,960	1.26	1.25	2.832391	192.3	190.4	0.99
avg						2.804744			

- What about the strong scaling case?
 - \Rightarrow The model should also simulate the computation
- What about irregular problems?
 - \Rightarrow No idea yet
- · Generalization of the approach?
 - \Rightarrow We plan to make more experiments

- · New method to make prediction of scalability
- The code is executed in the SimGrid model
- · Good results with two applications

- · Study the strong scaling approach
- · Test with different applications:
 - real applications
 - bigger applications
 - irregular applications

