

Projet FUI SICODYN

01 janvier 2012- 30 avril 2016

pour des SImulations crédibles via la COrrélation calcul-essai et l'estimation d'incertitudes en DYNamique des structures

Sylvie Audebert (EDF R&D)

EDF Lab Paris-Saclay

Durée du projet	52 mois
Coût du projet	3,82 M€
Aide BPI	1,45 M€
Aide FEDER	68,9 k€
Labellisation	Pôle SYSTEMATIC Pôle Nucléaire Bourgogne Pôle des Microtechniques
Pilotage	EDF R&D

Sommaire

Les 13 partenaires

Grands groupes	AIRBUS Defence & Space CEFENCE & SPACE	EDF	NECS NUMERICAL Engineering & Consulting Services	SULZER Pompes France SULZER
Etablissements de recherche	CETIM			
Moyennes entreprises (entre 250 et 2000 personnes)	SAMTECH			
PME (<250 personnes, définition européenne)	PHIMECA Engineering	VIBRATEC		
Académiques	ENS Cachan	FEMTO-ST	INSA Lyon	MSME Niversité Paris-est arne la Vallée

Contributeurs EDF R&D : AMA, MRI, MFEE

Structuration scientifique <SICODYN

Scientific innovations

Main demonstrator: Booster pump in industrial environment in EDF thermical plant

The Booster pump in SULZER Pumps France factory

The in situ non connected pump

In situ

The 8 main pump components

8/37

Observation de la variabilité numérique Confrontation calculs-essais

Méthode : 7 équipes indépendantes réalisent les mêmes calculs modaux

Bibliographie benchmarks en dynamique des structures Exemple

Quantification of prediction bounds caused by model-form uncertainty

Report LA-UR-13-27561, L.M. Gonzales, T.M. Hall, K. Van Buren, S. Anton, F.M. Hemez, 27 september 2013

K. Van Buren, T.M. Hall, L.M. Gonzales, F.M. Hemez, S. Anton, A case study to quantify prediction bounds caused by model-form uncertainty of a portal frame, Mechanical Systems and Signal Processing 50-51 (2015) 11-26

1st configuration: the built-up system with complex boundary conditions

3-component frame, bolted assembly:

2 vertical columns

Lot 1

1 top, horizontal beam

frame bolted to a base plate

Figure 1: Portal frame (left), top-side bolted joint (middle) and bottom of the frame (right).

Predict with accuracy the dynamic behaviour of the portal frame (4 first eigenmodes)

Methodology applied: 7 independent groups of students

Experimental

Lot 1

7 different frames fabricated, based on the same design specifications \rightarrow measure unit-to-unit variability

Disassemble and reassemble the structure between experimental tests \rightarrow test-to-test variability

Different tasks for each test: data acquisition, impact hammer, analysis of data

Numerical

Each group develops 3 numerical FE models Beam (1D) Shell (2D) Continuum (3D)

Material properties (steel, aluminium) imposed

Bolted connections all represented by coincident nodes

Variability of the first frame eigenfrequency

Lot 1

Main contribution of the prediction bias: boundary condition

→ free-free boundary condition imposed for work presented hereafter

2nd configuration: the free-free built-up system

Lot 1

Experimental configuration and instrumentation setup

Test-analysis correlation of the portal frame structure

Lot 1

Pessenant	Measurem	ents	Contact Stiffness Model		Tied Node Model	
Mode	Bounds (Hertz)	Range (Hertz)	Bounds (Hertz)	Range (Hertz)	Bounds (Hertz)	Range (Hertz)
1	58.8-to-71.6	12.8	53.8-to-73.1	19.3	43.5-to-70.4	26.9
2	97.5-to-103.0	5.5	65.8-to-101.2	35.4	65.5-to-100.5	35.0
3	102.0-to-106.0	4.0	100.4-to-106.2	5.8	93.2-to-105.3	12.1
4	170.0-to-193.0	23.0	168.5-to-198.3	29.8	148.0-to-191.7	43.7

Une démarche progressive

Geometrical, physical complexity

Observation of the numerical variability: the comprehensive approach

Variability of separate pump component eigenfrequencies (blind results)

Mean frequency gap (8 to 10 results):

$$M = \frac{1}{n} \sum_{i=1}^{n} \left| x_i - \overline{x} \right|$$

Eigenfrequency variability is mainly related to variability on material characteristics (cast iron) and complex component geometries

Pairing 2 modal bases of non connected pump

Mode 1 : flexion along horizontal transversal axis

Mode 2 : flexion along rotor axis

Mode 3 : global torsion mode around horizontal transversal axis

112.5 Hz

1×

ZX

64.2 Hz

64.6 Hz

MAC = 0.81

MAC = 0.88

MAC = 0.69

19/37

¥ ¥ x

76.9 Hz

86.1 Hz

edf

Variabilité numérique

Pompe déconnectée de ses tuyauteries

Numerical-experimental correlation on clamped non connected pump assembly (blind results)

Numerical modes					Experin mod	nental les		
				Picture not available				Flexion of the pump casing
		109 Hz	91 Hz	71 Hz	125 Hz			
	7				e1			Flexion along horizontal rotor axis
90 Hz	45 Hz	111 Hz	103 Hz	88 Hz	134 Hz	77 Hz	70 Hz	Flexion
								along transversa horizontal axis
92 Hz		146 Hz	178 Hz	132 Hz		134 Hz	152 Hz	

Lot 4 Reliability on modal models of free-free separate components and built-up structures

Free-free separate component

- Narrow numerical variability on eigenmodes (from 2% to 12% depending on components)
- Experimental eigenfrequency values are within the min.-max. numerical eigenfrequency value interval
- The comparison allows criticism relatively to both numerical and experimental results

Clamped built-up equipment

Numerical Min., Max., Exp. (2) Pump frequencies

- Pairing operation not trivial
- Variability of blind modal results of the pump assembly: 40% to 43% on 2 modes (larger on superior modes ?)
- The variability essentially comes from the boundary condition and interface connection representations

Reliability on modal models of free-free separate components and built-up structures

Ability of numerical models to accurately predict the global modal behaviour of a geometrically complex single component

Lot 4

The more complex the structure (number of sub-structures, boundary conditions), the larger the numerical-experimental gap

Need of partial experimental information to accurately represent the dynamical behaviour of built-up systems

L'incertitude numérique totale

Lot 5 : Incertitudes relatives aux simulations numériques

• Etudier la faisabilité de méthodes classiques d'estimation des incertitudes paramétriques sur un modèle de structure complexe (assemblage), de grande taille, dans son environnement industriel

• Prendre en compte l'incertitude de modèle et estimer l'incertitude totale relative à un calcul modal

Quantification a priori de l'incertitude numérique totale

Lot 4 Analyse de sensibilité probabiliste Exemple : méthode du cumul quadratique

eDF

Lot 5

Comparaison méthodes paramétriques Méthodes probabilistes – théorie des intervalles (OpenTurns)

Méthodes probabilistes

- Informations en entrée nécessaires : densités de probabilité des variables aléatoires
- Coûteuse en temps calcul (simulation de Monte Carlo sur méta-modèle)

Théorie arithmétique des intervalles

- Informations en entrée nécessaires : bornes de variation des paramètres
- Généralement moins coûteuse en temps calcul

Lot 6 : Confrontation variabilité observée vs incertitude paramétrique estimée

Confrontation possible sur les 2 premiers modes seulement A modèle fixé, l'incertitude paramétrique sous-estime la variabilité observée → incertitude de modèle, prépondérante, à considérer

Combinaison méthode probabiliste et sous-structuration dynamique

Components rigidly connected by two bolts Free-free two-component system

- prise en compte des incertitudes au niveau des modes propres des sous-structures (fréquences propres, déformées modales)
- Temps calcul fortement réduit
- Bien adapté aux structures industrielles

- variations in component eigenvalues only
- uniform distribution
- variation intervals relative to eigenfrequencies with fixed interfaces deduced from variability observed in the numerical benchmark for substructures in free-free configuration
- A Monte Carlo approach with 1000 runs applied in order to estimate eigenfrequency statistics

Combinaison méthode probabiliste et sous-structuration dynamique

	Bearing support		Frame		2-component assembly	
Mode	Eigenfrequency with fixed interfaces			Free-free eigenfrequency		
	Mean value (Hz)	Coeff. of variation (%)	Mean value (Hz)	Coeff. of variation (%)	Mean value (Hz)	Coeff. of variation (%)
1	91.4	43.2	13.9	103.8	37.6	23.1
2	133.8	46.4	27.6	207.6	48.8	12.8
3	251.1	45.3	35.3	145.3	96.5	6.4
4	262.7	44.3	94.1	69.2	108.7	6.2
5	314.3	43.9	98.9	76.1	116.7	4.6
6	353.1	45.0	103.2	51.9	123.1	3.3
7	523.0	46.7	120.9	44.3	141.7	3.2

Sensitivity of the first eigenfrequency of the two-component assembly

First eigenfrequency statistics of the twocomponent assembly

The variability introduced in intermediate result (eigenfrequency) at component level, instead of simply parametrical uncertainty, is a means to represent the total uncertainty.

Méthode généralisée paramétrique – non paramétrique

Pompe non connectée

2 x 9 = 18 hyperparameters relative to model parameters
+ 2 hyperparameters relative to model matrices
=> 20 hyperparameters to identify

A. Batou, C. Soize, S. Audebert, Model identification in computational stochastic dynamics using experimental modal data, *Mechanical Systems and Signal Processing*, 50-51, 307-322 (2015).

Lot 5

Méthode généralisée paramétrique – non paramétrique

- Méthode coûteuse en temps calcul
- Nécessite le calage des hyperparamètres à l'aide de mesures
- Méthode utilisée dans le processus projet chez PSA

Comparaison fréquences propres mesurées et densité de probabilité

The 5 first experimental eigenfrequencies are predicted with a high probability level. The 6th experimental eigenfrequency is predicted with a low probability level.

 $-m_E^- \leq m \leq m_E^+$

• Intervalles à bornes probabilisées

Lot 5

- Méthode adaptée aux assemblages de sous-structures
- Tout type d'incertitudes (de modèle, paramétriques) globalisées au niveau des sous-structures

Application à 3 systèmes dynamiques Extension au cas des fortes méconnaissances

Théorie des méconnaissances LOK

Large uncertainties

$$E = \overline{E} (1 + 0, 05 \eta)$$
$$K_N = \overline{K}_N (1 + 0, 5 \eta)$$
$$K_T = \overline{K}_T (1 + 0, 5 \eta)$$
$$\eta \sim \mathbb{U}_{[-1;+1]}$$

99%-intervals for 1000 samples

Frequency	Monte Carlo	LOK
396.10 Hz	[364.2 ; 406.0]	[369.5 ; 404.5]
423.32 Hz	[370.6 ; 439.0]	[373.8 ; 435.3]
503.81 Hz	[398.0 ; 590.6]	[401.2 ; 585.4]
	Reference ~253.7 h	[+0.79 ; -0.88]% ~15 min

3 premières fréquences propres de l'assemblage butée et support de palier

Méthode adaptée aux structures industrielles Faible coût de calcul Interprétation non immédiate

Bilan technique général

- Une démarche complète originale validée via son application postérieure par d'autres laboratoires
 - Observation variabilité numérique (résultats en aveugle)
 - Estimation a priori de l'incertitude numérique totale
 - Confrontation variabilité observée/incertitude estimée
- Des travaux réalisables uniquement dans un cadre collaboratif (benchmarks)
- Pour aller plus loin...
 - Démarche couplée numérique-expérimentale
 - Prise en compte simultanée de la fidélité aux données expérimentales et de la robustesse aux incertitudes
 - Elaboration de méthodes **simplifiées** d'estimation a priori des incertitudes
 - Prise en compte systématique de l'incertitude de modèle

Valorisation et dissémination

7 articles 46 communications dont 2 conférences « invité » 1 mémoire de thèse

S. Audebert, SICODYN International Benchmark on dynamic analysis of structure assemblies: variability and numerical-experimental correlation on an industrial pump, *Mécanique et Industries*, 11(6), 439-451 (2010).

S. Audebert, SICODYN International Benchmark on dynamic analysis of structure assemblies: variability and numerical-experimental correlation on an industrial pump (Part 2), *Mechanics & Industry*, 15(1), 1-17 (2014).

