FROM RESEARCH TO INDUSTRY

Ceaden

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS

Ulrich BIEDER

whole TrioCFD Team

DEN-STMF, CEA, UNIVERSITÉ PARIS-SACLAY

SÉMINAIRE ARISTOTE, NOVEMBER 8, 2016

- Objective: analysis of MSLB accidents
- VVER1000 reactor and the Kozloduy-6 coolant mixing experiments
- PIRT analysis and separate effect validation tests
- The numerical model
- Quantitative analysis of coolant mixing in VVER1000 reactor
- Conclusions and perspectives

Qualification of TrioCFD for simulating MSLB accidents in nuclear reactors

Validation of TrioCFD for fluid mixing in a full scaleVVER1000 reactor pressure vessel

 A MSLB accident was simulated by a coolant mixing experiment during the commissioning tests of the unit 6 of the KOZLODUY power plant

 This coolant mixing experiment was part of an OECD/NEA benchmark of 2003-2006 and CEA has access to the data

Ceaden Available geometrical data

Design of the reactor

- 4 loops with non-uniform azimuthal distribution of cold leg nozzles (within fabrication tolerance)
- Perforated barrel bottom with1344 flow holes
- Perforated core support columns
- Perforated core barrel in the upper plenum

Ceaden VVER1000 coolant mixing experiment

- Initial state
 - 4 MCP and 4 SG are in operation
 - Thermal power: 281MW i.e. 9.36% PN
 - Relative temperature rise in the core was calculated from measured cold leg and 95 assembly outlet temperatures
 - Average heat-up over the core: 3.2°C
- Transient
 - Closure of SIV-1 and isolating of SG-1 from feed water
 - Temperature rise in loop n°1: 13.6°C
- Final state
 - Measured core outlet temperature stabilizes about 1800s after closing SIV-1

Measured relative assembly temperature rise in the initial state

Ceaden Turbulence modelling & boundary conditions

• Boussinesq hypothesis to calculate the Reynolds stresses:

Р

$$-\overline{u_i'u_j'} = v_T \cdot \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i}\right) - \frac{2}{3}k\delta_{ij}$$

• Standard k- ϵ model to evaluate v_t :

$$\upsilon_{t} = C_{\mu} \frac{k^{2}}{\varepsilon}$$
$$\frac{\partial k}{\partial t} + \frac{\partial (U_{j}k)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(\upsilon + \frac{\upsilon_{t}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{j}} \right] - \varepsilon + \varepsilon$$

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial (U_j \varepsilon)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\upsilon + \frac{\upsilon_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\varepsilon 1} P \frac{\varepsilon}{k} - C_{\varepsilon 2} \frac{\varepsilon^2}{k} \qquad P = -\overline{u_i \, 'u_j \, '} \frac{\partial U_i}{\partial x_j}$$

- Boundary conditions
 - Dirichlet conditions at inlets of 4 cold legs
 - Dirichlet conditions at outlets of 3 hot legs
 - Von Neumann condition at one of hot leg outlet
 - Adiabatic walls and logarithmic wall functions at all solid structures

Loop	Velocity (m/s)		Temperature (°C)	
no.	Cold leg	Hot leg	Cold leg	Hot leg
1	10.71	-10.71	282.2	282.2
2	10.69	-10.69	269.9	269.9
3	10.71	-10.71	269.0	269.0
4	10.89	P=0	269.2	dT/dn = 0

Ceaden PIRT – Physical analysis of the mixing test

- PIRT (Phenomena Identification and Ranking Table) analysis:
 - To bring into focus dominant physical phenomena
 - To define single effect validation test cases
- For VVER1000 Coolant Mixing Transient:
 - Figure of merit: Pressure drop
 - Dimensionless number: Re number
 - Aimed precision of simulation: 10%

Separate effect test	Physical phenomena	Reynolds Number
1 – Downcomer	Channel flow	31.0 · 10 ⁶
2 – Perforated plates	Flow through orifices	4.5 · 10 ⁶
3 – Cold leg nozzles	Baffle impact	70.0 · 10 ⁶

Ceaden Separate effect study – Downcomer

Geometry of channel flow model

Friction pressure loss in channels (Re>4000):

$$\frac{\Delta P}{(\rho w_0^2/2)} = \frac{l}{D_0 \cdot (1.8 \log \text{Re} - 1.64)^2}$$

$$\text{Re} = \frac{w_0 D_0}{D_0}$$

Pressure gradient reference value: 0.370 kPa/m

V

Grid size (mm)	у+	Pressure gradient (kPa/m)	Relative error (%)
7	3772	0.336	7.69
3	1563	0.320	12.08
1	509	0.368	1.09

- Consequence for the reactor scale calculation:
 - A maximum error of 10% is intended
 - A y⁺ value of 1000 is the target for the mesh refinement in tubes and channels

Ceaden Separate effect study – Perforated plates

Geometry of 1 orifice- and 4 orifice model

Pressure drop coefficient for orifices:

Reference value: 80.798 kPa (one orifice) and 91.16 kPa (four orifices)

Mesh size of	Pressure loss (kPa) of	Relative	Pressure loss (kPa) of	Relative
orifice (mm)	one orifice model	error (%)	four orifice model	error (%)
8	135,2	67.33	-	-
6	114,5	41.71	-	-
5	103,4	27.9	-	-
4	89,43	10.62	101,1	10.9
3	83,95	3.9	96,56	5.9

- Consequence for the reactor scale calculation:
 - A maximum error of 10% is intended
 - The orifices should be meshed with mesh sizes of at least 4mm

CEA DEN/DANS/DM2S/STMF/LMSF

Ceaden Separate effect study – Cold leg nozzle

Mesh size (mm)	Pressure loss (kPa)	Relative error (%)
20 pure tetra	9.676	50.50
12 pure tetra	8.988	58.35
10 tetra with prism layers	8.748	59.46

- Consequence for the reactor scale calculation:
 - Non-isotropic turbulence is not correctly calculated by k-ε model
 - Errors are expected for the flow in the cold leg nozzles

Ceaden Definition of the validation domain

Validation domain of separate effect studies, VVER1000 coolant mixing experiment and further reactor applications

Weaknesses of the approach:

- More separate test cases are needed to validate other phenomena than ΔP ,
- More integral tests are needed coupling two or three physical phenomena.

- Separate Effect studies -> PIRT Integral Effect study -> VVER1000
 - experiment

Applications

-> MSLB scenario

Strengths of the approach:

- Each separate effect test covers one important physical phenomenon of the application domain,
- One integral test covers all the dominant physical phenomena of the application domain,
- The Re numbers of separate effect studies and integral test are consistent with the application domain.

Ceaden Extension of the validation domain

Realized integral tests oriented to other physical phenomena than ΔP

ROCOM test facility

1:5 scale primary circuit of a KONVOI reactor

Main inconvenience:

It is not possible to respect the reactor scale Reynolds Number in small scale experiments.

- Re reactor 1.000.000
- Re experiment 50.000

Ceaden Tetra meshing of the flow domain

50 million meshes (ICEM)

- Explicit modelling of important structures:
 - perforated plate,
 - core support columns,
 - upper plenum (guide tubes, perforated walls)

350 million meshes (TrioCFD)

- Isotropic refinement by TrioCFD
 - 1 tetrahedral element is cut into 8 new ones

- CPU on TGCC CURIE:
 - 50 million meshes
 1024 processor cores
 36h execution time
 - 350 million meshes
 9984 processor cores
 72h execution time

Ceaden Modelling of the reactor core (active part)

• Volume porosity:

$$\phi = \frac{V_{fluid}}{V_{total}} \approx 0.54$$

- Thermal source:
 - Constant normalized core power distribution
 - Proportional to the relative temperature rise in the initial state
- Additional flow resistance for tube bundles:

$$\vec{\nabla} P_{TB} = -\rho \cdot C_{fa} \frac{\left| \vec{u_a} \right|}{2 \cdot D_h} \vec{u_a} - \rho \cdot C_{ft} \frac{\left| \vec{u_t} \right|}{2 \cdot D_e} \vec{u_t}$$
$$C_f = a \operatorname{Re}^{-b} \quad \text{with} \quad \operatorname{Re} = \frac{UD}{V}$$

Direction	a	b	U	D
Axial	0.316	0.25	$ \overrightarrow{u_a} $	D_h
Transverse	4.03	0.27	$ \overrightarrow{u_t} $	D_e

Ceaden Temperature distribution in the reactor

- Clear distinction of the region affected by cold leg n° 1,
- The temperature at the core outlet before the closure of SIV-1 is very well predicted.

Ceaden Temperature distribution in the reactor

- Good representation of the temperature at core outlet (error globally < 1°C)
- Slight overestimation of the temperature maximum at core inlet (error < 2°C)
- Doubs on the estimation of the experimental core inlet temperature

CEA DEN/DANS/DM2S/STMF/LMSF

Ceaden Mixing coefficients

Loop-to-assembly mixing coefficients at core outlet for cold leg nº 1

Loop-to-assembly mixing coefficients are globally well predicted

Loop-to-loop mixing coefficients from cold leg i to hot leg j:

ν_	flow from loop i to j
л _{іј} —	total flow in loop j

Kij	Experiment	Calculation
K12	0.12	0.1183
K21	0.10	0.09852
K41	0.16	0.1572
K32	0.14	0.1391

Loop-to-loop mixing coefficients are very well predicted

Ceaden Velocity distribution

- Important gradients are observed in the region of perforated plates and walls,
- Velocity is constant in the active core region (porous media);
- Higher velocities are predicted in the periphery of the core, which was also observed in the Kozloduy-5 experiment.

Ceaden Pressure losses in the RPV

Dynamic pressure in the RPV in kPa

Difference kPa	Design	CFD
P0-P6	380	602
P0-P1	120	22
P1-P2	90	258
P2-P4	140	209
P4-P5	30	63
P5-P6	10	50

- Significant overestimation of the calculated pressure losses (6 bar instead of 3.8 bar),
- However, design pressure losses are not real pressure losses (GIDROPRESS),
- Most important overestimation of pressure loss through perforated plates and walls (all holes calculated with sharp edges)
- Improvement needed for core pressure loss correlation

Ceaden Conclusions and perspectives

Conclusions

The CFD model reproduces well the:

- Temperature distribution at the outlet of the reactor core
- Loop-to-assembly and loop-to-loop mixing coefficients
- Core inlet velocity profile

However:

 Significant overestimation of calculated pressure loss, especially in perforated plates

Perspectives

- Further mesh refinement of perforated plate, walls, support columns (information on the form of the holes are needed)
- Better prediction of pressure loss at the cold leg nozzle with better adapted turbulent models
- Improved pressure loss correlation are needed for the core region

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 76 78 | F. +33 (0)1 69 08 52 42

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

Direction de l'Energie Nucléaire Département de Modélisation des Systèmes et Structures Service de Thermohydraulique et de Mécanique des Fluides