
Go in High Energy Physics & Cosmology: computing, monitoring and
concurrency

Sébastien Binet
CNRS/IN2P3/LPC

binet@clermont.in2p3.fr
@0xb1ns

Séminaire Aristote

2016-06-30

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 1 / 55

HEP (High Energy Physics)

Field of physics which studies the fundamental laws of Nature and the properties of the
constituents of matter.
Many labs working on HEP around the world. But, perhaps one of the most famous ones
is CERN.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 2 / 55

http://cern.ch

CERN

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 3 / 55

CERN-LHC

LHC: Large Hadron Collider. A proton-proton collider of 27km of circumference.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 4 / 55

LHC tunnel and one of the ˜1200 dipole magnets

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 5 / 55

ATLAS detector (44m x 25m)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 6 / 55

ATLAS installation

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 7 / 55

Results

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 8 / 55

High level view of the data pipeline

Data is collected at the 4 interaction points

collisions every 25 ns

˜1 Mb (compressed) / collision

˜10 Pb/year of raw data

Raw data is then filtered to only keep ”interesting” events (collisions of protons)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 9 / 55

Main steps of data analysis/massaging

Generation: production of a single physics event (e.g.: a collision and its decay
products)

Simulation: modelling interactions between particles and detector material

Reconstruction: building physics objects (electrons, photons, ...) from the detector
signals (energy deposits)

Analysis: testing hypotheses against the reconstruction output

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 10 / 55

Software in HEP

Historically, software in HEP has been written in FORTRAN-77.

HEP people even wrote compilers

HEP community even defined a few extensions (MORTRAN)

Mid-90’s: migration to C++
Mid-2000’s: Python gained tremendous mindshare

first thru the steering of C++ binaries

then as complete analyses gluing C++ libraries together

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 11 / 55

Software in HEP - some numbers

An LHC experiment (e.g. ATLAS, CMS) is ˜3000 physicists but only a fraction of those
is developing code.
Reconstruction frameworks grew from ˜3M SLOC to ˜5M
Summing over all HEP software stack for e.g. ATLAS:

event generators: ˜1.4M SLOC (C++, FORTRAN-77)

I/O libraries ˜1.7M SLOC (C++)

simulation libraries ˜1.2M SLOC (C++)

reconstruction framework ˜5M SLOC (C++) + steering/configuration (˜1M SLOC
python) (want to have a look at the ATLAS code? CMS code?)

GCC: ˜7M SLOC
Linux kernel 3.6: 15.9M SLOC

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 12 / 55

http://acode-browser.usatlas.bnl.gov/lxr/source/
https://github.com/cms-sw/cmssw

People committing code to VCS per month

Wide variety of skill level Large amount of churn Once the physics data is pouring,
people go and do physics instead of software

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 13 / 55

Software developers

˜300 active developers (per experiment)
˜1000 different developers integrated over the lifetime of a single LHC experiment.

few ”real” s/w experts

some physicists with strong skill set in s/w

many with some experience in s/w development

some with no experience in s/w development

A multi-timezone environment

Europe, North-America, Japan, Russia

Many communities (core s/w people, generators, simulation, ...)
Development and infrastructures usually CERN-centric
Heavily Linux based (Scientific Linux CERN)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 14 / 55

http://cern.ch/linux

Software development cycle

VCS (CVS, then SVN. GIT: almost there)
Nightlies (Jenkins or homegrown solution)

need a sizeable cluster of build machines (distcc, ccache, ...)

builds the framework stack in ˜8h

produces ˜2000 shared libraries

installs them on AFS (also creates RPMs and tarballs)

Devs can then test and develop off the nightly via AFS
Every 6 months or so a new production release is cut, validated (then patched) and
deployed on the World Wide LHC Computing Grid (WLCG).
Release size: ˜5Gb

binaries, libraries (externals+framework stack)

extra data (sqlite files, physics processes’ modelisation data, ...)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 15 / 55

Software runtime ?

Big science, big data, big software, big numbers

˜1min to initialize the application

loading >500 shared libraries

connecting to databases (detector description, geometry, ...)

instantiating ˜2000 C++ components

2Gb/4Gb memory footprint per process

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 16 / 55

(obligatory xkcd reference)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 17 / 55

We learn to love hating our framework. (every step of the way)
And even more so in the future:

work to make our software stack thread-safe

or at least parts of it multithread friendly to harness multicore machines

quite a lot of fun ahead

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 18 / 55

Remember Go ?

compiles quickly (no warnings, imports)

enforces coherent coding rules (across projects)

builtin test/benchmark/documentation facilities

deploys easily, cross-compiles easily

installs easily (also 3rd-party packages: ”go get”)

fast to pick up, not as complicated as C++

builtin reflection system

builtin (de)serialization capabilities

concurrency support

garbage collected

Perfect match for many HEP use cases.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 19 / 55

Migrating to Go ? (evil plan for (HEP) world domination)

Migrating ˜5M SLOC of C++ code to Go, during data taking, unfortunately, won’t fly.
Creating new applications for data massaging or post-processing might.
Creating a new concurrent and parallel framework for the next accelerator might.
Need to build a critical mass of Go HEP enthusiasts
So far:

building the packages to read/write data in HEP formats (see under go-hep)

built a proof of concept of a concurrent framework: go-hep/gaudi-fwk

now building the real thing go-hep/fwk

building a physics simulation detector app on top of go-hep/fwk: go-hep/fads

building a package of data analysis facilities

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 20 / 55

http://github.com/go-hep
http://github.com/go-hep/gaudi-fwk
http://github.com/go-hep/fwk
http://github.com/go-hep/fads

Experience so far

Wrapping C++ libraries (via a C-shim) with cgo is ˜OK

time consuming (no surprise)

as with Python, you don’t want to cross language boundaries too frequently (perfs!)

using the SWIG support wasn’t possible (because of some C++ constructs not
supported by SWIG ’s parser)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 21 / 55

Experience so far

Experience pre-Go-1.5: No shared libraries.

plugins system (heavily used in our reconstruction frameworks) use shared libraries

no, funneling data through some IPC won’t fly (for ATLAS use case)

actually not a limitation: re-compile on the fly, fork-exec (and still faster than
booting Python VM + loading shared libraries, plus you get a static binary)

now, with Go > 1.5 (August-2015): shared libraries are here.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 22 / 55

Experience so far

Building small (and not so small) command-line utilities (a la git) is fun.

Wrote a build tool that way (hwaf)

Building a concurrent framework is also fun and surprisingly easy (thanks to goroutines

and channels.)

see go-fwk and go-hep@ACAT-2011 for more details

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 23 / 55

http://github.com/hwaf/hwaf
https://indico.fnal.gov/getFile.py/access?contribId=15&sessionId=4&resId=0&materialId=slides&confId=4986
http://indico.cern.ch/event/93877/session/6/contribution/49/material/slides/0.pdf

Experience so far

No generics/templates, no operator overloading.
In my experience, this hasn’t been a limitation.
Operator overloading isn’t a panacea.
Generics can easily be implemented with:

$ gofmt -r ’T -> MyType’ tmpl.go > mytype.go

(without the build-time cost that C++ templates impose) (w/o all the benefits of C++

templates. More of a pain point for framework implementers than users, though.)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 24 / 55

What about number crunching ?

The gc compiler is improving, especially the (yet to be released (in August-2016))
go-1.7 version:

brings a SSA backend for amd64

(more) SSE+AVX instructions

Number crunching Go programs can outperform C++ programs though:

3photons: a toy Monte-Carlo simulation program of e+e-⇒3photons collisions

C++ (serial)

$ time ./mc

real 0m36.733s

user 0m36.710s

sys 0m0.000s

Go-1.6.2 (serial) ## Go-1.7b2 (serial)

$ time ./3photons $ time./3photons-1.7b2

real 0m30.075s real 0m23.832s

user 0m30.210s user 0m23.793s

sys 0m0.020s sys 0m0.037s

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 25 / 55

https://github.com/sbinet-staging/3photons

Application to HEP

Using go-hep/fads as a guinea pig and poster child...

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 26 / 55

https://github.com/go-hep/fads

fads

fads is a ”FAst Detector Simulation” toolkit.

morally a translation of C++-Delphes into Go

uses go-hep/fwk to expose, manage and harness concurrency into the usual HEP
event loop (initialize — process-events — finalize)

uses go-hep/hbook for histogramming, go-hep/hepmc for HepMC input/output

Code is on github (BSD-3):
github.com/go-hep/fwk

github.com/go-hep/fads

Documentation is served by godoc.org:
godoc.org/github.com/go-hep/fwk

godoc.org/github.com/go-hep/fads

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 27 / 55

https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/go-hep/fwk
https://github.com/go-hep/hbook
htpps://github.com/go-hep/hepmc
https://github.com/go-hep/fwk
https://github.com/go-hep/fads
https://godoc.org
https://godoc.org/github.com/go-hep/fwk
https://godoc.org/github.com/go-hep/fads

go-hep/fads - Installation

As easy as:

$ go get github.com/go-hep/fads/...

Yes, with the ellipsis at the end, to also install sub-packages.

go get will recursively download and install all the packages that go-hep/fads
depends on. (no Makefile needed)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 28 / 55

https://github.com/go-hep/fads

go-hep/fwk - Examples

$ fwk-ex-tuto-1 -help

Usage: fwk-ex-tuto1 [options]

ex:

$ fwk-ex-tuto-1 -l=INFO -evtmax=-1

options:

-evtmax=10: number of events to process

-l="INFO": message level (DEBUG|INFO|WARN|ERROR)

-nprocs=0: number of events to process concurrently

Runs 2 tasks.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 29 / 55

go-hep/fwk - Examples

$ fwk-ex-tuto-1

::: fwk-ex-tuto-1...

t2 INFO configure...

t2 INFO configure... [done]

t1 INFO configure ...

t1 INFO configure ... [done]

t2 INFO start...

t1 INFO start...

app INFO >>> running evt=0...

t1 INFO proc... (id=0|0) => [10, 20]

t2 INFO proc... (id=0|0) => [10 -> 100]

[...]

app INFO >>> running evt=9...

t1 INFO proc... (id=9|0) => [10, 20]

t2 INFO proc... (id=9|0) => [10 -> 100]

t2 INFO stop...

t1 INFO stop...

app INFO cpu: 654.064us

app INFO mem: alloc: 62 kB

app INFO mem: tot-alloc: 74 kB

app INFO mem: n-mallocs: 407

app INFO mem: n-frees: 60

app INFO mem: gc-pauses: 0 ms

::: fwk-ex-tuto-1... [done] (cpu=788.578us)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 30 / 55

go-hep/fwk - Concurrency

fwk enables: - event-level concurrency - tasks-level concurrency
fwk relies on Go’s runtime to properly schedule goroutines.
For sub-task concurrency, users are by construction required to use Go’s constructs
(goroutines and channels) so everything is consistent and the runtime has the complete
picture.

Note: Go’s runtime isn’t yet NUMA-aware. A proposal (June-2015) is in the works.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 31 / 55

https://github.com/go-hep/fwk
https://github.com/go-hep/fwk
https://golang.org
https://golang.org
https://golang.org
https://docs.google.com/document/d/1d3iI2QWURgDIsSR6G2275vMeQ_X7w-qxM2Vp7iGwwuM/pub

go-hep/fads - real world use case

translated C++-Delphes’ ATLAS data-card into Go

go-hep/fads-app

installation:

$ go get github.com/go-hep/fads/cmd/fads-app

$ fads-app -help

Usage: fads-app [options] <hepmc-input-file>

ex:

$ fads-app -l=INFO -evtmax=-1 ./testdata/hepmc.data

options:

-cpu-prof=false: enable CPU profiling

-evtmax=-1: number of events to process

-l="INFO": log level (DEBUG|INFO|WARN|ERROR)

-nprocs=0: number of concurrent events to process

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 32 / 55

https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/go-hep/fads/blob/master/cmd/fads-app/main.go

go-hep/fads - components

a HepMC converter

particle propagator

calorimeter simulator

energy rescaler, momentum smearer

isolation

b-tagging, tau-tagging

jet-finder (reimplementation of FastJet in Go: go-hep/fastjet)

histogram service (from go-hep/fwk)

Caveats:

no battle-tested persistency (JSON, ASCII, Gob, rio)

jet clustering limited to Nˆ3 (slowest and dumbest scheme of C++-FastJet)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 33 / 55

https://github.com/go-hep/fastjet
https://github.com/go-hep/fwk
https://github.com/go-hep/rio

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 34 / 55

Results - testbenches

Linux: Intel(R) Core(TM)2 Duo CPU @ 2.53GHz, 4GB RAM, 2 cores

MacOSX-10.6: Intel(R) Xeon(R) CPU @ 2.27GHz, 172GB RAM, 16 cores

Linux: Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz, 40 cores

Linux: Westmere E56xx/L56xx/X56xx (Nehalem-C) (3066.774 MHz), 20-cores,
40Gb RAM

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 35 / 55

Linux (20 cores) testbench: memory (smaller==better)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 36 / 55

Linux (20 cores) testbench: event throughput (higher==better)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 37 / 55

fads: Results & Conclusions

good RSS scaling

good CPU scaling

bit-by-bit matching physics results wrt Delphes (up to calorimetry)

no need to merge output files, less chaotic I/O, less I/O wait

Also addresses C++ and python deficiencies:

code distribution

code installation

compilation/development speed

runtime speed

simple language

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 38 / 55

Go in Cosmology

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 39 / 55

Go in Cosmology

Relatively new activity at LPC-Clermont-Ferrand: Large Synoptic Survey Telescope
(LSST)

hardware development activities

software (analysis, simulation, db) development activities

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 40 / 55

https://www.lsst.org

Go in Cosmology (and medical applications)

developed a supernovae fusion simulation (replacing an Excel-based one)

developed a control command application (+GUI) to steer a testbench (replacing a
Java-based one)

developed (not by me, actually) a data acquisition (+GUI) for a medical detector
(replacing a C++03-pthreads one)

See bonus slides for more informations.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 41 / 55

Experience so far

Even if Go is relatively new, support for general purpose scientific libraries is there and
growing, thanks to the gonum community:

gonum/blas, a go based implementation of Basic Linear Algebra Subprograms

gonum/matrix, to work with matrices

gonum/graph, to work with graphs

gonum/optimize, for finding the optimum value of functions

gonum/integrate, provides routines for numerical integration

gonum/stat, for statistics and distributions

...

Plotting data is also rather easy:

gonum/plot (most of the plots seen here were made w/ gonum/plot)

go-gnuplot

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 42 / 55

https://github.com/gonum
https://github.com/gonum/blas
https://github.com/gonum/matrix
https://github.com/gonum/graph
https://github.com/gonum/optimize
https://github.com/gonum/integrate
https://github.com/gonum/stat
http://github.com/gonum/plot
https://github.com/sbinet/go-gnuplot

What’s missing ?

The Go scientific-oriented ecosystem is slowly bootstrapping itself. Other ”communities”
are gathering too:

Biology: biogo

Chemistry: gochem

So, what’s missing ? (IMHO) not that much.

a dash of performance (but we are still light years ahead of CPython)

critical mass

the rest is/will-be history :)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 43 / 55

https://github.com/biogo/biogo
http://gochem.org/

What’s missing ? - II

A (native) GUI toolkit?

Bindings to Qt, GTK, etc... exist but they break the nice ”go-get” install experience.
A (native) GUI toolkit is being built: golang.org/x/exp/shiny

Right now, workaround is to create a Go web server and serve JavaScript+HTML.
Nice to have to help spreading Go:

a robust way to write e.g. Python extension modules in Go (see go-python/gopy)

a go interpreter ? (see igo, go-interpreter and/or Jupyter+Go)

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 44 / 55

https://godoc.org/golang.org/x/exp/shiny/screen
https://golang.org
https://github.com/go-python/gopy
https://github.com/sbinet/igo
https://github.com/go-interpreter
https://github.com/gophergala2016/gophernotes

Thank you

Sébastien Binet CNRS/IN2P3/LPC

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 45 / 55

Bonus

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 46 / 55

Go @LSST: Fusil

replaced an Excel-based (!) supernovae fusion simulation

astrogo/snfusion (aka FuSil)

Split into 2 commands: snfusion-gen and snfusion-plot

$ snfusion-gen -n 30000

snfusion-gen: processing...

snfusion-gen: composition of 10000 nuclei:

Nucleus{A: 12, Z: 6}: 6127

Nucleus{A: 16, Z: 8}: 3873

snfusion-gen: iter #3000/30000...

[...]

snfusion-gen: iter #30000/30000...

snfusion-gen: composition of 3066 nuclei:

Nucleus{A: 12, Z: 6}: 71

Nucleus{A: 16, Z: 8}: 63

[...]

Nucleus{A: 56, Z:28}: 639

snfusion-gen: processing... [done]: 10.52320492s

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 47 / 55

https://github.com/astrogo/sn-fusion

Go @LSST: Fusil - III

$ snfusion-plot -f output.csv -o output.png

snfusion-plot: plotting...

snfusion-plot: NumIters: 30000

snfusion-plot: NumCarbons: 60

snfusion-plot: Seed: 1234

snfusion-plot: Nuclei: [Nucleus{A: 12, Z: 6} [...] Nucleus{A: 52, Z:26} Nucleus{A: 56, Z:28}]

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 48 / 55

Go @LSST: Fusil - III

For ease of use, added a simulation web portal snfusion-web

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 49 / 55

https://github.com/astrogo/snfusion/tree/master/cmd/snfusion-web

Go @LSST: LSST testbench

Replaced a Java based application to control a set of motors to rotate a (dummy for
now) telescope apparatus:

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 50 / 55

Go @LSST: LSST testbench - II

Replaced a Java based application to control a set of motors to rotate a (dummy for
now) telescope apparatus:

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 51 / 55

Go @LSST: LSST testbench - III

a web server written in Go (with net/http), serves as the GUI (WebSocket +
Polymer)

handles authentication, authorization

commands relayed to the motors over Modbus

displays webcam stream, stores motors’ status in a database (BoltDB)

Figure: The fcs-lpc-motor-ctl architecture.

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 52 / 55

https://www.polymer-project.org
https://en.wikipedia.org/wiki/Modbus
https://github.com/boltdb/bolt
https://github.com/go-lsst/fcs-lpc-motor-ctl

Go @LSST: LSST testbench - IV

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 53 / 55

Go @AVIRM: application of HEP detectors to medical detectors

Replaced (not by me) a C++-03/pthreads application for data acquisition, with a much
improved feature-wise Go version:

receives data flow from socket (@ 20-100 Hz, limited by VME dead-time)

checks binary data integrity (0xCAFEDECA control words)

writes data to disk

launches/stops/pauses monitoring

listens for instructions from user

Available at gitlab.in2p3.fr/avirm/analysis-go

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 54 / 55

https://gitlab.in2p3.fr/avirm/analysis-go

Go @AVIRM - II

Sébastien Binet () Go in High Energy Physics & Cosmology: computing, monitoring and concurrency2016-06-30 55 / 55

	Main Talk
	slides

