Acquisition comprimée de métamodèles parcimonieux pour l'aérodynamique et l'aéroélasticité

Éric Savin^{*,†}

eric.savin@{onera,centralesupelec}.fr

+ J.-L. Hantrais-Gervois[‡] & J. Peter*

* Onera – Dépt. Mécanique des Fluides Numérique 29, avenue de la Division Leclerc F-92322 Châtillon cedex, France

[‡]Onera – Dépt. Aérodynamique Appliquée 8, rue des Vertugadins F-92190 Meudon, France

[†]CentraleSupélec – Dépt. Mécanique et Génie Civil Grande Voie des Vignes F-92295 Châtenay-Malabry, France

Some motivations...

Mach number isocontour fields with 5 different inflow Mach number conditions ($\underline{M}_{\infty} = 0.73$) for an OAT15A profile: $0.92 \times \underline{M}_{\infty}$, $0.96 \times \underline{M}_{\infty}$, \underline{M}_{∞} , $1.04 \times \underline{M}_{\infty}$, $1.08 \times \underline{M}_{\infty}$.

Simon-Guillen-Sagaut-Lucor, Comput. Methods Appl. Mech. Engng. 199, 1091 (2010)

Overview

Background on UQ in CFD

Sparse reconstruction

3 Application to BC-02: RAE2822 transonic airfoil (2D)

Application to ALBATROS flexible wing-fuselage configuration (3D)

Overview

Background on UQ in CFD

2 Sparse reconstruction

3 Application to BC-02: RAE2822 transonic airfoil (2D)

Application to ALBATROS flexible wing-fuselage configuration (3D)

Uncertainty Quantification in CFD - Model problem

• A generic computational model g involving d parameters $\boldsymbol{\xi} = (\xi_1, \xi_2, \dots \xi_d) \in \mathbb{R}^d$:

$$\mathcal{Y} \ni y = g(\xi_1, \xi_2, \dots, \xi_d).$$

• A polynomial surrogate model g_N of order N:

$$g pprox g_N({m x}) = rg \min_{\pi \in \mathbb{P}^p[{m x}]} rac{1}{2} \int_{\mathbb{R}^d} |g({m x}) - \pi({m x})|^2 \mathcal{P}_{\Xi}(\mathrm{d}{m x}),$$

of which desired "convergence" $\mathbb{E}\{|g_N(\boldsymbol{\xi}) - g(\boldsymbol{\xi})|^2\} \to 0 \text{ as } N \to \infty \text{ depends on } \mathcal{P}_{\Xi} \text{ (and does not necessarily hold).}$

• Embedded projection (spectral stochastic finite elements), non-intrusive projection, "collocation", kriging, regression...

Non-intrusive UQ – Regression

• Assume a quadrature rule $\Theta^M \equiv \{\xi_\ell, \omega_\ell\}_{\ell=1}^M$ is available, s.t.:

$$\int_{\mathbb{R}^d} f(\boldsymbol{x}) \mathcal{P}_{\boldsymbol{\Xi}}(\mathrm{d}\boldsymbol{x}) \simeq \sum_{\ell=1}^M \omega_\ell f(\boldsymbol{\xi}_\ell) \,.$$

• Then $g_N \approx g_N^M = \sum_{j=0}^N c_j^M[\mathbf{x}]^j$ with:

$$\mathbf{c}^{M} = \arg\min_{\mathbf{d}^{M} \in \mathbb{R}^{(N+1)^{d}}} \frac{1}{2} \left(\mathbf{y} - [M] \mathbf{d}^{M} \right)^{\mathsf{T}} [W] \left(\mathbf{y} - [M] \mathbf{d}^{M} \right) ,$$

where $\{y_{\ell} = g(\boldsymbol{\xi}_{\ell})\}_{\ell=1}^{M}$, $M_{\ell j} = [\boldsymbol{\xi}_{\ell}]^{j}$, and $[W] = \text{diag}\{\omega_{\ell}\}$.

• Numerous methods are available to solve this weighted least-squares minimization problem whenever $M \ge N$.

Non-intrusive UQ – Polynomial chaos (projection)

• Assume a (truncated) orthonormal basis $\mathcal{B}^N \equiv \{\psi_\alpha\}_{\alpha=0}^N$ of $L^2(\Omega, \mathcal{P}_{\Xi})$ is available, s.t.:

$$\int_{\mathbb{R}^d} \psi_{\alpha}(\mathbf{x}) \psi_{\beta}(\mathbf{x}) \mathcal{P}_{\Xi}(\mathrm{d}\mathbf{x}) = (\psi_{\alpha}, \psi_{\beta})_{L^2} = \delta_{\alpha\beta} \,.$$

- Then $g_N = \sum_{\alpha=0}^N g_\alpha \psi_\alpha$ where $g_\alpha = (g, \psi_\alpha)_{L^2}$, $0 \le \alpha \le N$.
- But using the quadrature Θ^M , $g_N \simeq \sum_{\alpha=0}^N g_\alpha^M \psi_\alpha$ with:

$$\mathbf{g}^M_{lpha} = \sum_{\ell=1}^M \omega_\ell \mathbf{y}_\ell \psi_{lpha}(\boldsymbol{\xi}_\ell) \,, \quad \mathbf{0} \leq lpha \leq N \,.$$

Remark: P_Ξ = ⊗^d_{j=1} N(0, 1) is called polynomial chaos (PC), and generalized polynomial chaos (gPC) otherwise.

Non-intrusive UQ – Polynomial chaos (projection)

• The first moments/cumulants of the output g may be recovered using the quadrature Θ^M :

$$\mathbb{E}\{f(g)\} = \int_{\mathbb{R}^d} f(g(\mathbf{x})) \mathcal{P}_{\Xi}(\mathrm{d}\mathbf{x}) \simeq \sum_{\ell=1}^M \omega_\ell f(y_\ell) \,.$$

- The mean μ : f(x) = x, variance σ^2 : $f(x) = (x \mu)^2$, skewness γ_1 : $f(x) = (\frac{x \mu}{\sigma})^3$, kurtosis β_2 : $f(x) = (\frac{x \mu}{\sigma})^4$...
- The moments m_j : $f(x) = x^j$, and the characteristic function Φ_Y :

$$\Phi_{\mathbf{Y}}(u) = \int_{\mathcal{Y}} e^{\mathrm{i} u \cdot y} \mathcal{P}_{\mathbf{Y}}(\mathrm{d} y) = \sum_{j=0}^{+\infty} \frac{m_j}{j!} (\mathrm{i} u)^j,$$

where $\mathcal{P}_{Y}(\mathrm{d}y) = \left| \frac{\mathrm{d}g^{-1}}{\mathrm{d}y} \right| \mathcal{P}_{\Xi}(g^{-1}(\mathrm{d}y)) \text{ and } Y \sim g(\Xi).$

• **Remark**: see Savin-Faverjon http://arxiv.org/abs/1607.01914 for the computation of $(\psi_{\alpha}\psi_{\beta},\psi_{\gamma})_{L^2}$ and so on (linearization problem); codes available at

https://github.com/ericsavin/LinCoef/

Non-intrusive UQ - Outcome

- Therefore we need:
 - **(**) a quadrature rule in \mathbb{R}^d : $\Theta^M \equiv \{\boldsymbol{\xi}_{\ell}, \omega_{\ell}\}_{\ell=1}^M$;

 - **3** to perform repeated evaluations $\{y_{\ell} = g(\xi_{\ell})\}_{\ell=1}^{M}$; **3** to assess the accuracy of g_N (UQ-surrogate) independently of the accuracy of g (CFD solver).
- **Problem**: $M \gg 1$, and even $M \gg 100$, which is often unaffordable (and actually useless).

Overview

Background on UQ in CFD

Sparse reconstruction

3 Application to BC-02: RAE2822 transonic airfoil (2D)

Application to ALBATROS flexible wing-fuselage configuration (3D)

Compressed sensing

Candès-Romberg-Tao Commun. Pure Appl. Math. **59**(8), 1207 (2006) Donoho IEEE Trans. Inform. Theory **52**(4), 1289 (2006)

Compressed sensing

• Underdetermined problem with some sparsity constraint:

$$\boldsymbol{x}^{\star} = \arg\min_{\boldsymbol{x}} \{ \|\boldsymbol{x}\|_{p}; \ \boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{x} \}, \qquad (P_{p,0})$$

with the ℓ_p -norm $\|\mathbf{x}\|_p = \left(\sum_{j=1}^N |x_j|^p\right)^{\frac{1}{p}}$, p > 0, and $\|\mathbf{x}\|_0 = \#\{j; x_j \neq 0\}$ otherwise.

• Compressed sensing promotes ℓ_1 convex relaxation of the $(P_{0,0})$ problem (Basis Pursuit), provided Φ has some nice mixing properties.

Sparse reconstruction techniques – Principle

 Sparse polynomial decompositions via convex ℓ₁-minimization (Basis Pursuit Denoising, Chen-Donoho-Saunders 1998) whenever M ≪ N and only few coefficients g_α are non zero:

$$\mathbf{g}^{\star} = \arg\min_{\mathbf{g}} \{ \| \mathbf{W} \mathbf{g} \|_{1}; \| \mathbf{y} - \Phi \mathbf{g} \|_{2} \le \varepsilon \}.$$
 (P_{1,\varepsilon})

• Here \boldsymbol{W} is some weighting, $\boldsymbol{g} = (g_0, g_1, \dots g_N)^{\mathsf{T}}$,

$$[\mathbf{\Phi}]_{\ell\alpha} = \psi_{\alpha}(\boldsymbol{\xi}_{\ell}),$$

and the sampling points $\{\xi_{\ell}\}_{\ell=1}^{M}$ should be selected s.t. the Vandermonde-type measurement matrix Φ has maximum incoherence.

Sparse reconstruction techniques – The theorems Candès-Romberg (2007)

Definition (Coherence)

$$\mu(\Theta^M,\mathcal{B}^N) = \max_{\substack{\mathbf{0} \leq |lpha| \leq |\ell| \leq |M| \ \mathbf{1} \leq |\ell| \leq |M|}} |\psi_lpha(oldsymbol{\xi}_\ell)|^2 \,.$$

Theorem (1)

Assume g_N is K-sparse on the gPC basis \mathcal{B}^N . Then if M measurements $\{\xi_\ell\}_{\ell=1}^M$ are selected at random, and:

$$M \geq C \cdot \mu(\Theta^M, \mathcal{B}^N) \cdot K \cdot \log N$$

for some C > 0, the solution to $(P_{1,0})$ is exact with overwhelming (sic) probability.

Remark: as a rule of thumb, $M \ge 4K$ is enough for a successful recovery.

Sparse reconstruction techniques – The theorems Candès-Romberg-Tao (2006)

Definition (Restricted isometry constant)

The smallest number $\delta_K < 1$ s.t.:

$$(1-\delta_{\mathcal{K}})\|\boldsymbol{g}_{\mathcal{K}}\|_2^2 \leq \|\boldsymbol{\Phi}\boldsymbol{g}_{\mathcal{K}}\|_2^2 \leq (1+\delta_{\mathcal{K}})\|\boldsymbol{g}_{\mathcal{K}}\|_2^2$$

for all *K*-sparse vectors $\mathbf{g}_K \in \mathcal{X}_K := {\mathbf{g} \in \mathbb{R}^N; \|\mathbf{g}\|_0 \le K}$.

Theorem (2)

Assume $\delta_{2K} < \sqrt{2} - 1$. Then the solution \mathbf{g}^{\star} to $(P_{1,\varepsilon})$ satisfies:

$$\|\boldsymbol{g}^{\star} - \boldsymbol{g}\|_{2} \leq C_{0} \frac{\|\boldsymbol{g}_{K} - \boldsymbol{g}\|_{1}}{\sqrt{K}} + C_{1}\varepsilon$$

for some $C_0, C_1 > 0$ depending only on δ_{2K} .

Remark: the theorem allows to deal with imprecise measurements $\varepsilon > 0$ and approximately sparse vectors.

Overview

Background on UQ in CFD

2 Sparse reconstruction

3 Application to BC-02: RAE2822 transonic airfoil (2D)

Application to ALBATROS flexible wing-fuselage configuration (3D)

Numerical model

• RANS + Spalart-Allmaras model, $769c \times 193c$ mesh:

- Multigrid approach for the NS system over 3 grid levels with 2 iterations on the coarse grid and 1 fine level iteration for the turbulent equation.
- 2000 iterations with Roe flux and 2nd order MUSCL scheme for the convective term of the NS system.

Cambier-Heib-Plot Mechanics & Industry 14(3), 159 (2013)

Nominal flow: $\underline{M}_{\infty} = 0.729$, $\underline{\alpha} = 2.31^{\circ}$, $\underline{Re} = 6.50 \, 10^{6}$

- Shock wave well captured, good agreement with experiments (AGARD Report #AR-138 1979, NPARC Alliance Validation Archive 1998).
- Typical computational time: 2 hours.

Definition of the uncertainties (d = 3)

 The thickness-to-chord ratio r ≡ ξ₁, free stream Mach number M_∞ ≡ ξ₂, and angle of attack α ≡ ξ₃ are d = 3 variable parameters following β_I(a, b) marginal probability laws.

	a = b	X_m	X_M
ξ1	4	0.97 × <u>r</u>	1.03 × <u>r</u>
ξ2	4	$0.95 imes \underline{M}_{\infty}$	$1.05 imes \underline{M}_{\infty}$
ξ3	4	$0.98 imes \underline{\alpha}$	$1.02 imes \underline{lpha}$

- Remark: ξ ~ β₁(a, b) arises from Jaynes' MaxEnt once (i) the compact support [X_m, X_M] (ii) the means E{log(ξ − X_m)} and E{log(X_M − ξ)} are known.
- Our aim is to construct polynomial surrogates for the drag, lift and pitching moment coefficients C_D , C_L and C_m using gPC adapted to the foregoing PDFs (Jacobi polynomials).

Sampling sets (design of experiments DoE)

• The 1-dimensional Gauss-Jacobi quadrature Θ_1^M :

$$\int_{-1}^{1} f(x)(1-x)^{a}(1+x)^{b} dx \simeq \sum_{\ell=1}^{M-M_{b}} \omega_{\ell}f(\xi_{\ell}) + \sum_{\ell'=1}^{M_{b}} \omega_{M-M_{b}+\ell'}f(\xi_{M-M_{b}+\ell'})$$

is exact for polynomials up to order $2M - 1 - M_b$, where M_b is the number of fixed nodes (e.g. ± 1).

- M_b = 0 is the classical Gauss-Jacobi (GJ) rule;
- $M_b = 1$ is the Gauss-Jacobi-Radau (GJR) rule;
- $M_b = 2 \ (-\xi_{N-1} = \xi_N = 1)$ is the Gauss-Jacobi-Lobatto (GJL) rule.

• Multi-dimensional quadratures may be obtained by tensorization and/or sparsification.

Sampling sets (design of experiments DoE)

• *k*-th level *d*-dimensional sparse rule (Smolyak 1963):

$$\Theta_{d,k} = \sum_{q=k-d}^{k-1} \sum_{j_1+\cdots+j_d=d+q} \Theta_1^{j_1} \otimes \cdots \otimes \Theta_1^{j_d}.$$

• **Example**: k = 5, d = 3, then M = 99 using a 1D GJL rule,

$$\Theta_{3,5} = \Theta_1^2 \otimes \Theta_1^2 \otimes \Theta_1^2 + \Theta_1^2 \otimes \Theta_1^2 \otimes \Theta_1^3 + \Theta_1^2 \otimes \Theta_1^3 \otimes \Theta_1^4 + \mathsf{perm}.$$

 The k-th level d-dimensional sparse rule based on GJL nodes is exact for d-dimensional polynomials of total order 2k - 3 (Novak-Ritter 1999, Heiss-Winschel 2008).

Sampling sets (design of experiments DoE)

• Curse of dimensionality: $M = k^d$ for the product rule, while $M \sim \frac{(2d)^k}{k!}$ for the sparse rule with k fixed and $d \gg 1$.

d k	2	3	4	5	6
2	4	8	16	32	64
3	8	20	48	112	256
4	17	50	136	352	880
5	29	99	304	872	2384
6	53	201	673	2082	6092
7	85	363	1337	4483	14072
8	133	647	2585	9293	31025
9	193	1079	4697	18143	64469
10	273	1769	8321	34323	129197

• Sparse quadratures typically outperform product quadratures for $d \ge 4$.

Output statistics by 10-th level GJL product rule (N = 165, M = 1000)

• Mean/variance:

	μ	σ
C _D	133.37e-04	34.13e-04
C_L	72.274e-02	1.670e-02
Cm	-453.99e-04	32.24e-04

PDFs:

Output statistics by 6-th level GJL sparse rule (N = 35, M = 201)

• Mean/variance:

	μ	σ
C _D	133.38e-04	34.10e-04
C_L	72.269e-02	1.673e-02
Cm	-453.96e-04	32.18e-04

PDFs:

Output statistics by ℓ_1 -minimization (N = 165, M = 80)

• Mean/variance:

	μ	σ
C _D	133.33e-04	34.05e-04
C_L	72.271e-02	1.670e-02
Cm	-453.95e-04	32.18e-04

PDFs:

Summary

- Sparse recovery by l₁-minimization assumes low-order interactions between the variable parameters;
- Sparsity can be proved for some parametric, possibly non-linear elliptic/parabolic PDEs (Chkifa-Cohen-Schwab 2014)-but for the present model it is rather observed *a posteriori*;
- Higher dimensions may be addressed alike-but invoking *e.g.* a McDiarmid inequality is that relevant?
- Optimal Uncertainty Quantification (Lucas-Owhadi-Ortiz 2008, Owhadi *et al.* 2013) to compute bounds of the probability of occurrence of a given critical scenario.

PhD student wanted!!

Overview

Background on UQ in CFD

2 Sparse reconstruction

3 Application to BC-02: RAE2822 transonic airfoil (2D)

Application to ALBATROS flexible wing-fuselage configuration (3D)

Numerical model

• RANS + Spalart-Allmaras model, 9,008,512 cells:

- Implicit LU-SSOR phase;
- Multigrid approach for the NS system over 3 grid levels;
- Jameson centered scheme with additional artificial viscosity outside of the boundary layers;
- Backward Euler time integration scheme;
- Typical computational time: 6 hours on 60 cores.

Cambier-Heib-Plot Mechanics & Industry 14(3), 159 (2013)

Definition of the uncertainties (d = 10)

The Mach number M ≡ ξ₁, lift coefficient C_L ≡ ξ₂, 4 wing bending parameters ξ₃,...ξ₆, and 4 wing torsion parameters ξ₇,...ξ₁₀ are d = 10 variable parameters following uniform marginal probability laws.

	X _m	X _M
ξ1	0.74	0.76
ξ2	0.55	0.65
$\xi_3 \dots \xi_6$	0.5 × <u>/</u>	2.0 × <u>I</u>
$\xi_7 \dots \xi_{10}$	0.02 × <u>J</u>	10.0 × <u>J</u>

• Our aim is to construct polynomial surrogates for the angle of attack α , drag coefficients C_{Ds} and C_{Dv} computed at the wing skin and in the far-field, respectively, pitching moment coefficient C_m , wing tip bend U, and wing tip twist ϕ using PC adapted to the foregoing PDFs (Legendre polynomials).

Sampling set (design of experiments DoE)

• The DoE is constituted by a combination of 18 manually generated sampling points (•) and 83 randomly generated sampling points (•) using Latin Hypercube Sampling (LHS).

Output statistics by ℓ_1 -minimization (N = 285, M = 101)

 $\bullet\,$ Mean, variance, root-mean square error, and Kullback-Leibler divergence from a Normal distribution $\mathcal{N}:$

	C _m	C _{Ds}	C _{Dv}	α	U	φ
μ	-11.63e-02	219.83e-04	218.69e-04	2.53	2.16	-6.10
σ	1.55e-02	6.53e-04	6.28e-04	0.20	0.26	0.80
e2	4.70e-03	0.45e-03	0.35e-03	1.88e-03	1.65e-03	3.97e-03
$D_{\mathbf{KL}}(\bar{\mathcal{P}} \mathcal{N})$	1.10e-02	1.11e-02	1.39e-02	1.40e-02	0.50e-02	0.62e-02

PDFs:

• Sensitivity to at most 2 or 3 parameters out of 10.

Output statistics by ℓ_1 -minimization (N = 285, M = 101)

 $\bullet\,$ Mean, variance, root-mean square error, and Kullback-Leibler divergence from a Normal distribution $\mathcal{N}:$

	C _m	C _{Ds}	C _{Dv}	α	U	φ
μ	-11.63e-02	219.83e-04	218.69e-04	2.53	2.16	-6.10
σ	1.55e-02	6.53e-04	6.28e-04	0.20	0.26	0.80
e2	4.70e-03	0.45e-03	0.35e-03	1.88e-03	1.65e-03	3.97e-03
$D_{\mathbf{KL}}(\bar{\mathcal{P}} \mathcal{N})$	1.10e-02	1.11e-02	1.39e-02	1.40e-02	0.50e-02	0.62e-02

PDFs:

• Sensitivity to at most 2 or 3 parameters out of 10.

References

- G. Blatman, B. Sudret, Prob. Engng. Mech. 25(2), 183-197 (2010);
- E.J. Candès, J.K. Romberg, T. Tao, IEEE Trans. Inform. Theory 52(2), 489-509 (2006);
- E.J. Candès, M.B. Wakin, IEEE Sig. Proc. Mag. 25(2), 21-30 (2008);
- S. C. Chen, D. L. Donoho, M. A. Saunders, SIAM J. Sci. Comput. 20(1), 33-61 (1998);
- A. Chkifa, A. Cohen, C. Schwab, J. Math. Pure Appl. 103(2), 400-428 (2014);
- D.L. Donoho, IEEE Trans. Inform. Theory 52(4), 1289-1306 (2006);
- A. Doostan, H. Owhadi, J. Comp. Phys. 230(8), 3015-3034 (2011);
- J. Hampton, A. Doostan, J. Comput. Phys. 280, 363-386 (2015);
- J. Hampton, A. Doostan. Compressive sampling methods for sparse polynomial chaos expansions. In Handbook of Uncertainty Quantification (R. G. Ghanem, D. Higdon, H. Owhadi eds.), Springer International Publishing, Cham (2016);
- F. Heiss, V. Winschel, J. Econometrics 144(1), 62-80 (2008);
- O. Le Maître, O. Knio. Spectral Methods for Uncertainty Quantification. With Applications to Computational Fluid Dynamics. Springer, Dordrecht (2010);
- L. Mathelin, K. A. Gallivan, Commun. Comput. Phys. 12(4), 919-954 (2012);
- F. Montomoli, M. Carnevale, A. D'Ammaro, M. Massini, S. Salvadori. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines. SpringerBriefs in Applied Sciences and Technology, Springer International Publishing, Cham (2015);
- E. Novak, K. Ritter, Constructive Approx. 15(4), 499-522 (1999);
- J. Peng, J. Hampton, A. Doostan, J. Comput. Phys. 267, 92-111 (2014); J. Comput. Phys. 310, 440-458 (2016);
- M. P. Pettersson, G. Iaccarino, J. Nordström. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Springer International Publishing, Cham (2014);
- É. Savin, A. Resmini, J. Peter, AIAA Paper #2016-0433 (2016);
- O. Schiavazzi, A. Doostan, G. laccarino, Int. J. Uncertainty Quantification 4(4), 303-331 (2014);
- C. Soize, R. Ghanem, SIAM J. Sci. Comput. 26(2), 395-410 (2004);
- E. van den Berg, M.P. Friedlander, SIAM J. Sci. Comput. 31(2), 890-912 (2008);
- L. Yan, L. Guo, D. Xiu, Int. J. Uncertainty Quantification 2(3), 279-293 (2012);
- X. Yuang, G. E. Karniadakis, J. Comput. Phys. 248, 87-108 (2013).

Acknowledgement

This work has been supported by the European Union's 7th Framework Program for research, technological development and demonstration under grant agreement #ACP3-GA-2013-605036.

www.umrida.eu

Thank you for your attention!!