
Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Android malware
Attacks & Counterattacks

Valérie Viet Triem Tong

CentraleSupelec
Equipe INRIA Cidre/CentraleSupelec/CNRS/Université de Rennes 1

valerie.viettriemtong@centralesupelec.fr

Séminaire Aristote - Ecole Polytechnique
1er décembre 2016

Android malware Valérie Viet Triem Tong 1/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

This talk focuses on Security of Android devices

a popular application may
be : 50 000 000 to
100 000 000 downloads

it is easy to submit apps on
Google Play

1,400,000 apps in 2014
(Google Play)

+ 1200 % of malicious apps
in 2012

Android malware Valérie Viet Triem Tong 2/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Why these malware have appeared ?

Because they are a simple way to make money

by sending text message to premium numbers

by taking control of the device

by spying the user

in ransoming the user

Android malware Valérie Viet Triem Tong 3/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

What are these Android malware ?

Most of the time

contaminate the device through an Android application

hidden in a benign application (repackaging)

few pieces of code among a lot of lines of java byte code

Android malware Valérie Viet Triem Tong 4/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

How to get rid of these malware ?

By static analysis

detect that a code is malicious without executing it

detect → analyze → react

By dynamic analysis

detect that a code is malicious by observing its execution

detect → analyze → react

Android malware Valérie Viet Triem Tong 5/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Challenges in static analysis

Malware easily circumvent (automatic) static analyzer

who try to detect that a code is malicious without executing it

Studied pieces of code have to be at least readable by the analyzer

It’s thus really easy to evade static analyzers

Malware authors simply use

obfuscation

reflection

encryption

dynamic loading

. . .

Android malware Valérie Viet Triem Tong 6/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

For instance ..

1 // w i thout r e f l e c t i o n
2 Foo foo = new Foo () ;
3 f oo . h e l l o () ;

1 // wi th r e f l e c t i o n and s t r i n g o b f u s c a t i o n
2 S t r i n g va r1 = ”Y2xhc3NwYXRoLkZvbw==” ;
3 Object ob j = C l a s s . forName (new S t r i n g (Base64 . decode (

var1 , Base64 .DEFAULT))) . new Ins tance () ;
4 S t r i n g va r2 = ”aGVsbG8=” ;
5 Method m = ob j . g e tC l a s s () . getDec laredMethod (new S t r i n g

(Base64 . decode (var2 , Base64 .DEFAULT))) , new Clas s
<?>[0]) ;

6 m. i nvoke (ob j) ;

Android malware Valérie Viet Triem Tong 7/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Challenges in dynamic analysis

Malware easily circumvent (automatic) dynamic analyzer

who try to detect that a code is malicious by observing its
execution

Studied pieces of code have to be at least executed by the analyzer

It’s thus really easy to evade dynamic analyzers

Malware authors simply delay the attack

wait for a period of time

wait for a user event

wait for a remote order

wait something

. . .

Android malware Valérie Viet Triem Tong 8/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

For instance ..

Dynamic analysis evasion tries to ensure
that malicious code is not monitored.

1 i f g e tDev i c e ID () . c o n t a i n s (”000000000”) | |
ge tF i l eS t r e amPath (”/ s y s / qemu trace ”) . e x i s t s ()

2 s tay do rmant () ; // P o s s i b l y Emulator
3 e l s e
4 d o e v i l () ; // Dev ice

Android malware Valérie Viet Triem Tong 9/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Roadmap

Dynamic analysis is a promising approach but is not
enough studied.

It mainly faces to the following challenges

1 Suspicious code triggering

2 Capturing malware behavior

3 Attack explanation

Android malware Valérie Viet Triem Tong 10/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Triggering suspicious behaviors

Defeating malware protections against dynamic analysis

Android malware Valérie Viet Triem Tong 11/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Protections against dynamic analysis

Launching infected app is not sufficient

to observe malicious executions

Malware don’t run on demand

and wait for a triggering event

a period of time ;

a message from a remote
server ;

a system event ;

a user event ;

Android malware Valérie Viet Triem Tong 12/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Defeating protections against dynamic analysis
Best Paper at the Int. Conf. on Malicious and Unwanted Software 2015

An Android malware

has an entry point in the bytecode of the app

can be dynamically loaded, encrypted, obfuscated

can try to send SMS, make calls, obeys to a remote server

Aafer, Du & Yin [SecureComm2013] have identified

Some APIs as
Android.telephony.SmsManager, Java.net.UrlConnection,

Android.telephony.TelephonyManager, Java.lang.Process

more used by malware than by goodware

Android malware Valérie Viet Triem Tong 13/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Suspicious code targeting (by static analysis of the bytecode)

For each method in the bytecode computes a risk score.
The more the method uses sensitive APIs, the higher is the score.

The scoring function points out malicious codes

On our dataset of reversed malware

0.009% of methods have a score higher than 0

72% of them are (indeed) malicious

Android malware Valérie Viet Triem Tong 14/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Playing with the infected app as GroddDroid
kharon.gforge.inria.fr/grodddroid.html

1 Collects graphical elements

2 Explores the app by
clicking on the buttons

3 Can go back

4 Can launch the app again

5 Detects loops

6 Until he has explored all
the different activities

7 Can force the malicious
code if needed

Android malware Valérie Viet Triem Tong 15/30

kharon.gforge.inria.fr/grodddroid.html

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Is GroddDroid able to force malware to execute ?

GroddDroid reconstructs an execution path towards the
suspicious code

GroddDroid modifies the bytecode and cancels the conditional
jumps that could drive away from the malicious code

First experiments

GroddDroid succeed to trigger 28 of the most scored units of code
appearing on 100 malware

Android malware Valérie Viet Triem Tong 16/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Capturing malware behavior

Monitoring information flows at system level

Android malware Valérie Viet Triem Tong 17/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Principles

1 A mark is attached to each sensitive piece of information
2 Marks are propagated at each observation of a flow

Fichier 2Fichier 1 cp Fichier 3 cat

xx

Android malware Valérie Viet Triem Tong 18/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Principles

1 A mark is attached to each sensitive piece of information
2 Marks are propagated at each observation of a flow

cp Fichier 3 cat

xx

Fichier 2Fichier 1

Android malware Valérie Viet Triem Tong 18/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Principles

1 A mark is attached to each sensitive piece of information
2 Marks are propagated at each observation of a flow

cp Fichier 3 cat Fichier 2

mv

Fichier 1

Android malware Valérie Viet Triem Tong 18/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Principles

1 A mark is attached to each sensitive piece of information
2 Marks are propagated at each observation of a flow

xx

Fichier 2catFichier 1 cp Fichier 3 Fichier 2Fichier 1 cp Fichier 3 cat

xxxx

Fichier 2catFichier 1 cp Fichier 3Fichier 3Fichier 3 cat

Android malware Valérie Viet Triem Tong 18/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Principles

1 A mark is attached to each sensitive piece of information
2 Marks are propagated at each observation of a flow

xx

Fichier 2catFichier 1 cp Fichier 3

Android malware Valérie Viet Triem Tong 18/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Principles

1 A mark is attached to each sensitive piece of information
2 Marks are propagated at each observation of a flow

xx

Fichier 2catFichier 1 cp Fichier 3

Android malware Valérie Viet Triem Tong 18/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Principles

1 A mark is attached to each sensitive piece of information
2 Marks are propagated at each observation of a flow

Fichier 2cat

xx

Fichier 1 cp Fichier 3

Android malware Valérie Viet Triem Tong 18/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Marks initialization

In our model, origin of information is explicit

Each sensitive piece of information is uniquely identified

Information flows

are performed by the kernel during system calls.

Android malware Valérie Viet Triem Tong 19/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

(Andro)Blare : our information flow monitor blare-ids.org

(Andro)Blare

1 maintains marks in extended attributes of files

2 updates marks at each observation of an information flow

3 is implemented within an adaptation of LSM framework

Android malware Valérie Viet Triem Tong 20/30

blare-ids.org

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

(Andro)Blare observes

Each system call

(read, write, fork, execve, ...)

that generates an information flow between files, sockets or
processes.

(file, socket, processus)
Blare has a local but accurate view of explicit information flows

Blare logs

each observed flow
[TIMESTAMPS] [ORIGIN] [DESTINATION] [ITAG]

that generates a huge amount of log entries

Android malware Valérie Viet Triem Tong 21/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Understanding data dissemination

To better understand how a malware impacts its environment

Which files have been modified ?

Which processes have been executed ?

Which remote IP adresses have been contacted ?

And how these objects interact ?

At the end of the execution where are data originated from the
application ?

The answers are in the log of the information flow monitor.

Android malware Valérie Viet Triem Tong 22/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Extracting knowledge of logs

A System Flow Graph (SFG) is a directed labelled graph

Nodes are labelled by
type ;

name ;

system id

and model containers of information

Edges are labelled by

timestamps ;

itags of involved contents

and model information flows

Android malware Valérie Viet Triem Tong 23/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

SFG due to the monitoring of an Android application

Android malware Valérie Viet Triem Tong 24/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Understanding malware behavior

Using logs of an information flow monitor

Android malware Valérie Viet Triem Tong 25/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Usual Subgraphs

Android malware Valérie Viet Triem Tong 26/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Malicious behavior

The attack is described in the remaining subgraph

Android malware Valérie Viet Triem Tong 27/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

What can we do on big collection of malware ...

Android malware Valérie Viet Triem Tong 28/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Conclusion

Android malware Valérie Viet Triem Tong 29/30

Contexte Suspicious code triggering Capturing malware behavior Understanding malware behavior Conclusion

Labex CominLabs Kharon Project (2015-2018)

Main objectives of the project

Decide if an application is a malware by studying its SFG.

Give a simple representation of malware behavior.

Already realized

GroddDroid a framework to triggering suspicious behaviors.

The Kharon Platform an analysis platform located at the
LSH-Rennes

Kharon dataset a collection of reversed malware

Together with J.F. Lalande (Insa CVL) & T. Genet (U. Rennes 1)

& R. Andriatsimandefitra (Phd)& M. Leslous (Phd) & A. Trulla (Phd)

and more than 15 students from CentraleSupelec and Insa CVL.

kharon.gforge.inria.fr

Android malware Valérie Viet Triem Tong 30/30

	Contexte
	Suspicious code triggering
	Capturing malware behavior
	Understanding malware behavior
	Conclusion

