

Urban-scale quantitative visual analysis

Josef Sivic

with D. Crandall, C. Doersch, A. Efros, A. Gupta, S. Lee, N. Maissonneuve, S. Singh

CityLabs@INRIA

INRIA – Willow Project Département d'Informatique, Ecole Normale Supérieure, Paris

WHAT MAKES PARIS LOOK LIKE PARIS?

[Doersch, Singh, Gupta, Sivic, Efros SIGGRAPH'12]

On Baoiste hyeser is a monif P.aris

...this is Paris

Raise your hand if ...

Humans are good but what about machine?

Can machine recognize visual elements characterizing an urban area?

Our Goal:

Given a large geo-tagged image dataset, we automatically discover **visual elements** that characterize a geographic location

Our Hypothesis

- The visual elements that capture Paris:
 - -Frequent: Occur often in Paris
 - -Discriminative: Are not found outside Paris

Map based imagery provides a comprehensive visual record of a city

Scientific challenges

1. **Difficult learning problem**: How do you represent and automatically learn vocabulary of architectural elements characteristic for a city?

2. Efficiency: need to search through large amount of visual data (hundreds

of millions of data points)

Problem formulation

Weakly supervised machine learning: [Bach and Harchaoui'08, Xu et al.'04] Given a set of inputs χ_i and supervisory meta-data y_i , i=1,...,Nlearn vocabulary $\hat{z}_i = f(x_i)$ by solving

Discriminative loss on data

$$\min_{f,z} \sum_{i=1}^{N} \ell(z_i, f(x_i)) + \Omega(f)$$

$$\underbrace{S.t. \quad g(z) = y}_{\text{Supervision from available meta-data}}$$

Input {x_i}: Millions of image patches extracted from street-view images from different cities **Supervisory meta-data {y_i}:** geo-tags for each image

Representing Visual Patterns

[Dalal and Triggs, "Histogram of Oriented Gradients"]

Our Approach

Paris

Not Paris

I. Use geo-supervision II. Find groups that discriminate positive from negative data

Paris: A Few Top Elements

Elements from Prague

Analyze architecture style over time

Geo-located Google street-view images

Cadastre maps

[Lee, Maissonneuve, Crandall, Efros, Sivic, ICCP 2015]

Cadastre map of Paris: 128k buildings with meta-data

Find temporal trends in architecture style

Problem: how to learn sequences of visual elements?

Find temporal trends in architecture style

Problem: how to learn sequences of visual elements?

$$\min_{f,z} \sum_{i=1}^{N} \ell(z_i^t, f(\mathbf{x}_i)) + \Omega(f)$$

s.t.
$$g(z^t) = y$$

 $h(z^{t}) = z^{t+1}$ Capture "trends" by an additional constraint on vocabulary labels learnt from data

Scientific challenges:

- What is the appropriate form of temporal constraints?
- Can we learn jointly f, z and h from billions of inputs?

Visual elements specific for a time-period

Visual elements specific for a time-period

Evolution of architectural elements

[Lee, Maissonneuve, Crandall, Efros, Sivic, ICCP 2015]

Evolution of architectural elements

-1800

1801-1850

-1800 1801-1850 | 1851-1914

-1800 | 1801-1850 | 1851-1914

1801-1850 1801-1850 | 1851-1914 | 1915-1919

1851-1914 | 1915-1919 1801-1850

1940-1967 | 1968-1975 | 1976-1981 | 1982-1989 | 1990-1999

So far: analysis of Street-view imagery

• Static 2D record of the city at present time

What next?

I. Historical urban visual record

II. 3D urban visual record

TA MURETA Const. 6. Co., protecting the distance signature and if some const. 6. Const. A scale to be and a summary front system const. 6. Datase in protection of a scale state of the const. 6. Datase in protection of the scale of the scale state (in state of the scale of the scale

III. Dynamic urban visual record

I. Historical urban visual record

Quantify evolution of a particular place over time

Applications: new ways to access archives for archeology, history, or architecture...

Example: painting to 3D model alignment

Painting

Painting

Historical photograph

Sketch

[Aubry, Russell, Sivic, Painting-to-3D model alignment via discriminative visual elements, Transactions on Graphics, 2014]

II. 3D urban visual record

Goal: detailed semantic 3D reconstruction for simulation of urban environments (e.g. noise, pollution, energy consumption). [ANR project SEMAPOLIS, 2013-2016]

Towards semantic 3D reconstruction

Goal: detailed semantic 3D reconstruction for simulation of urban environments (e.g. noise, pollution, energy consumption). [ANR project SEMAPOLIS, 2013-2016]

III. Dynamic urban visual record

Public space cameras

Cameras around us

Car cameras

Citizen cameras

Towards large-scale temporal analysis

Extract statistics of human behaviors across a city over time

crossing street

"bicycle accident"

riding bicycle

Applications: new ways to optimize road safety, urban planning or commerce in cities

Summary

- Multiple data sources and archives provide a comprehensive visual record of cities.

- Goal: develop visual quantitative analysis tools to:
 - understand, simulate and optimize urban environments