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Automated Market Makers

• Automated Market Makers (AMMs) are the dominant paradigm for
Decentralized Exchanges (DEXs)

• But what are they?

What are their fundamental properties?

 How should they be designed?



Roadmap to a Theory of AMMs

1. Design Space:
• Construct methodology and formal language for the description of AMMs

2. Economic Model:
• Identify tradeoffs and characterize market equilibrium

3. Mechanism Design:
• Propose well-defined objectives functions
• Characterize optimal design of AMMs (optimal slippage and fees)



The microeconomics of AMMs

• Show that standard microeconomics is the right language to describe
the design space of AMMs

• Use convex optimization and economically interpret our findings:

1. Arbitrageurs solve compensated demand problem

2. Dual problem is more intuitive and powerful than primal



AMMs are two-sided markets
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Impact of Liquidity Providers
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Impact of Traders
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Constant Function Market Makers

• Most AMMs are Constant Function Market Makers (CFMMs)

• A trade 𝑇 = (𝐼, 0) is admissible iff
𝑈 𝑅 + 𝐼 − 𝑂 ≥ 𝑈(𝑅)

𝑈:𝑅+
𝑛 → 𝑅 is the trading function

𝑅 ∈ 𝑅+
𝑛 is the level of reserves

𝐼, 𝑂 ∈ 𝑅+
𝑛 are the reserves input and output from the trade

• Uniswap: 𝑅 ∈ 𝑅+
2 and 𝑈 = 𝑅1𝑅2



Arbitrageur Problem

• Arbitrageur observes a reference
price P for the assets

• She solves the following problem

• Identical to Hycksian demand!
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Oracle Property

• If the trading set S(R) is strictly
convex, there exists a unique
no-arbitrage trade 𝑹′∗

where λ is a scaling factor

• Oracle Property: Arbitrageurs
synchronize off-chain and on-
chain prices when trading set is
strictly convex

𝑃 = λ𝛻𝑈(𝑅′∗)
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CFMM Equivalence

• Two CFMMs with the same trading set are equivalent

• Two CFMMs are equivalent iff their trading functions are
monotonic transformations of one another, i.e. 𝑈 = 𝑓 ∘ 𝑈 with 𝑓
strictly increasing

• Example: Balancer 𝑅 ∈ 𝑅+
2 and 𝑈 = 𝑅1

1/2
𝑅2

1/2
= 𝑅1𝑅2 = 𝑈′

where 𝑈′ is the trading function of Uniswap



Expenditure Function

• Express problem in the dual space

• Expenditure function is the portfolio value of LPs in the absence of
arbitrage opportunities

• Properties:
1. Shephard’s Lemma:

2. Separability: 𝐸 𝑃, 𝑉 = 𝜑 𝑉 𝑒 𝑃 iff the trading function is homothetic

𝐸 𝑃, 𝑉 = 𝑚𝑖𝑛𝑅 𝑃𝑇𝑅|𝑈(𝑅) ≥ 𝑉

𝑅∗ = ℎ 𝑃, 𝑉 = 𝛻𝑃𝐸 𝑃, 𝑉



Homothetic Trading Functions

• The no-arbitrage price is homogenous of
degree zero in the liquidity of the AMM iff its
trading function is homothetic

• An homothetic function is a monotonic
transformation of a function that is
homogenous of degree one

 True for Uniswap, Balancer but not for Curve!

• If we want prices to be independent of overall
liquidity, we can focus on trading functions
that are homogenous of degree one



Duality

• The expenditure function is the conjugate
of the indicator function 𝛿𝑆 𝑅

• If S(V ) is convex, the conjugate of the 
expenditure function is the indicator 
function

E(P, V) = 𝛿𝑆 𝑉
∗ (𝑃) = −𝑠𝑢𝑝𝑅 𝛿𝑆 𝑉 𝑅 − 𝑃𝑇𝑅

𝜹𝑺(R)=0

𝜹𝑺(R)=-∞
𝛿𝑆 𝑉 𝑅 = 𝛿𝑆 𝑉

∗∗ 𝑅

= −𝑠𝑢𝑝𝑃 𝛿𝑆 𝑉
∗ 𝑃 − 𝑃𝑇𝑅

𝑷



Optimal design

• Design problem is more intuitive in the dual space

• Given a portfolio value function, we can search for the CFMM
that generates it!

• Example: Uniswap expenditure function

Its conjugate yields the indicator function of its trading set

𝛿𝑆 𝑉
∗∗ 𝑅 = −𝑠𝑢𝑝𝑃 𝐸 𝑃, 𝑉 − 𝑃𝑇𝑅

=  
0 𝑖𝑓 𝑅1𝑅2 ≥ 𝑉

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸(𝑃, 𝑉) = 2 𝑉𝑃1𝑃2
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Optimal design

• Method can be applied to arbitrary payoffs

• For example, what is the CFMM that generates the payoffs of a
European Option?
Answer: Compute the conjugate function of the Black-Scholes formula

(Angeris et al. 2021)!

Useful? Could solve the oracle problem for options vaults



Impermanent Loss

• Another application of duality is 

the computation of impermanent 

losses

• The impermanent loss is the 

difference between the portfolio 

value of the AMM and of a static

position after a price change



Impermanent Loss in Dual Space

• Much simpler to compute 

impermanent losses in the dual 

space

• All the information is

encapsulated in the Expenditure

function:

𝐿 𝑃, 𝑃′; 𝑉 = 𝐸 𝑃′; 𝑉 − 𝑃′𝑇𝛻𝐸 𝑃; 𝑉



Conclusion

• Standard microeconomics is the natural language to establish the properties of
CFMMs

• Formulation in the dual space is more powerful and more intuitive

• Now that we have formalized the design space, next task is to identify the
economic tradeoffs

• For that, we need to turn our attention to the problem solved by the LPs

• Material for another presentation!


