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fast, with or without HW acceleration, etc.); it supports
containers whose workload and duration are not known
in advance (which is the general case for many applica-
tion domains) and must be learned at runtime; it supports
fluctuating workloads by adapting the number of servers
in the different generations, thus enabling energy-efficient
container scheduling in cloud data centers.

We have implemented our approach within the DOCKER
SWARM framework [6]. In particular, GENPACK includes a
comprehensive monitoring framework, as well as resource
management, container migration, and scheduling mech-
anisms. We have tested our system in a dedicated data
center with real-world traces from [7]. Our evaluation reveals
that GENPACK is up to 23% more energy-efficient than
SWARM’s built-in schedulers with a real-world trace.

This paper is organized as follows. We first introduce a
motivating scenario in §II and describe the overall archi-
tecture of GENPACK in §III. We present the monitoring
framework and the scheduling mechanisms respectively in
§IV and §V. We briefly discuss some implementation notes
in §VI and provide a comprehensive evaluation in §VII.
Finally, we review related work in §VIII and conclude in
§IX.

II. MOTIVATING SCENARIO

To illustrate and assess the benefits of proper container (or
VM)1 placement, we first illustrate the limitation of existing
scheduling policies on a simple scenario.

We define two types of containers: cpu-heavy containers
require 2 CPU cores and 1 GB of RAM, while mem-heavy
containers require only 1 CPU core but 2 GB of RAM. We
set up a cluster of nodes with 8 available cores and 8 GB
of RAM, running UBUNTU SERVER (v15.10) and DOCKER
(v1.10.1). The containers are managed by Docker Swarm
(v1.2.0) and they execute the STRESS-NG benchmark [8]
with a fixed total number of operations before terminating.

We deploy the containers in a dedicated cluster using four
placement strategies:

• spread places new containers on the node with the
least number of containers;

• binpack deploys containers on the same node until
its resources are totally exhausted before moving to the
next node;

• random dispatches containers at random;
• custom assigns containers to nodes so that they fit

into the least number of nodes, by taking into account
both the CPU and memory requirements.

For the sake of illustration, assume that a node can host
(i) 3 cpu-heavy, or (ii) 3 mem-heavy, or (iii) 2 cpu-heavy
and 2 mem-heavy containers of each type. In that case, a

1In the remaining of the paper, we primarily consider containers, which
are essentially lightweight VMs, and we use the two terms interchangeably.
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Figure 1. Placement of the containers with 3 scheduling strategies for a
given arrival order of containers, and assuming that a node can host 3 cpu-
heavy containers, or 3 mem-heavy containers, or 2 of each type (top). While
spread and binpack would require 4 nodes to schedule 12 containers,
custom requires only 3 (bottom).

scheduler that takes into account the nature of the workload
can obviously perform more efficient container placement.

Figure 1 shows a simple execution where the 12 contain-
ers (6 of each type) are registered in the following order:
4 cpu-heavy, 2 mem-heavy, 2 cpu-heavy, 4 mem-heavy.
Containers specify their resource needs and the system
performs placement accordingly without overbooking. A
possible container scheduling for the spread, binpack,
and custom strategies is shown in the bottom part of the
figure. As one can see, with 3 nodes available the first
two strategies can only schedule 10 containers, whereas the
custom strategy can place all of them on the 3 nodes.
Although very simplistic, this example illustrates the need
for scheduling strategies that are aware of the requirements
of the containers and the properties of the workloads.

In our actual experiment, we set the CPU load of contain-
ers to 20,000 “bogo” operations2 for each CPU core. This
corresponds to a total of 40, 000 and 20, 000 operations for
cpu-heavy and mem-heavy containers, respectively. Figure 2

2Fake operations that represent the unit of load of the benchmark.
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Figure 6. Overview of the monitoring support in GENPACK.

maintain a up-to-date cartography of available resources in
the cloud data center.

Profiling the resources consumption.: Upon deploy-
ment of a new container within the nursery generation,
GENPACK uses a CADVISOR daemon [3] to collect, aggre-
gate, process, and export metrics about running containers
every 30 seconds. In particular, CADVISOR logs resource
isolation parameters, historical resource usage, histograms
of complete historical resource usage, and network statistics
for each system container running on a DOCKER host.
Collected metrics are automatically exported towards an
INFLUXDB service [9] hosted on the master node (see Fig-
ure 6). INFLUXDB provides a time-series database to store
cluster-wide metrics per container, according to a specific
data retention policy (x minutes in GENPACK). Whenever
needed, GENPACK can therefore query INFLUXDB to learn
about the containers’ workloads.

Computing the container envelopes.: Periodically,
GENPACK picks the containers running in the nursery gen-
eration and triggers a scheduling phase for all of them. As
part of this phase, GENPACK queries INFLUXDB to convert
raw resource metrics into container envelopes, which will
be used by the scheduler to estimate the expected resource
consumption. In particular, for each resource, GENPACK
first computes the metrics distribution and extracts the 90 th

percentile value as a component of the resource envelope.
Then, GENPACK splits the set of containers into k clusters
by applying the k-means algorithm, which belongs to the
category of unsupervised learning approaches. For example,
we can set k = 4 to segregate 4 classes of CPU-, disk-,
network-, and memory-intensive workloads into 4 container
envelopes.

Finally, within each envelope, containers are ordered per
decreasing resource consumption score, which is computed

GenPack

Resources
consumption

Containers
clusters

InfluxDB
Containers

metrics

Containers
envelopes

Nodes
metrics

Nodes
ranking

K-means 
clustering

Availability 
ranking

90th 
percentile

Containers 
ranking

Containers
migration

cAdvisor
metrics

Swarm

Figure 7. Container and node profiling in GENPACK.
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The resulting container envelopes are posted to the GEN-
PACK scheduler, which is in charge of placing the containers
among the nodes of the young generation.

Beyond this first scheduling phase, GENPACK keeps
monitoring and profiling the containers within the young
generation in order to consolidate the resource envelope prior
to a later migration in the old generation.

Maintaining the node availability cartography.: GEN-
PACK monitors the resource availability of nodes within
the young and old generations. For each generation, it uses
this information to rank the nodes according to resource
availability, least available nodes first, by computing for each
node j the availability level as:

availabilityj =
q

cpu2
ratio + disk2

ratio + net2ratio +mem2
ratio ,

which corresponds to the norm of the resource vec-
tor ~rj = (cpuratio diskratio netratio memratio) that
GENPACK extracts from INFLUXDB. This ranking of nodes
will then be used by the scheduler to find the first fitting
node to host a container, ultimately minimizing the number
of hosts to be used—i.e., that need to be powered up.

V. CONTAINER SCHEDULING

Once the container profiles are identified and the as-
sociated resource envelopes have been computed by the
monitoring module of GENPACK, the scheduling module
builds on these resources estimations to identify the best
fitting node for each of the container executing in the nursery
generation.

More specifically, Algorithm 1 describes the scheduling
strategy applied by GENPACK to migrate a set of profiled
containers at runtime. The scheduling phase is triggered for
a given set of container envelopes and available nodes.
The algorithm starts by homogeneously blending the con-
tent (i.e., container descriptions) of the envelopes (line 2
and lines 17–31) to increase of the diversity of containers
per node. From there, it iterates over this ordered set of
containers to be scheduled (line 5) and picks the first
node n among the ordered list of available nodes (as
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PACK scheduler, which is in charge of placing the containers
among the nodes of the young generation.

Beyond this first scheduling phase, GENPACK keeps
monitoring and profiling the containers within the young
generation in order to consolidate the resource envelope prior
to a later migration in the old generation.
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of hosts to be used—i.e., that need to be powered up.
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Once the container profiles are identified and the as-
sociated resource envelopes have been computed by the
monitoring module of GENPACK, the scheduling module
builds on these resources estimations to identify the best
fitting node for each of the container executing in the nursery
generation.

More specifically, Algorithm 1 describes the scheduling
strategy applied by GENPACK to migrate a set of profiled
containers at runtime. The scheduling phase is triggered for
a given set of container envelopes and available nodes.
The algorithm starts by homogeneously blending the con-
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Figure 11. Migration of containers between generations.
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Figure 12. Active hosts per generations.

number of active hosts for each generation, as shown in
Figure 12. The sampled Borg trace triggers 131 migrations
from the nursery to the young and 50 from the young to
the old generation. These results partially derive from the
chosen configuration of monitoring periods. We postpone to
future work a full sensibility analysis of these parameters
with respect to the Borg trace.

While performing these experiments, we observe differ-
ent replay timings—i.e., the time required to completely
inject the Borg trace in our cluster—between the scheduling
strategies under test. Given the ideal duration of 1 hour,
the random strategy completes in 1h19m54s, spread in
1h02m42s, binpack in 2h22m5s and finally the GENPACK
strategy in 2h37m42s. These differences can be explained
by the different load on the DOCKER daemon running on
the host VMs and in general the ability to load balance
the containers across the hosts and VMs. It is important to
stress that these results correspond to the costs of injecting
the Borg trace with our prototype, but do not directly
reflect the system costs of scheduling in real conditions. In
particular, as we show in the following Section VII-D, the
four strategies are equivalent with respect to job completion
times.

D. Job completion time
We compare the observed job completion time when using

the default SWARM strategies against the GENPACK strategy.
Figure 13 shows that our approach does not impact nega-
tively the executing time of the jobs. The tested strategies
result in the same long tail of few longer jobs as well as the
same inflection point for the 90th percentile. Instead, the
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Figure 13. Distribution (CDF) of job completion times.

4 strategies produce the same job completion distribution,
and thus offer the same experience to the end-users of a
GENPACK cluster. Given the reported job completion times,
we can conclude that GENPACK does not over-commit
the cluster resources and rather offers a resource-efficient
scheduling approach.

E. Energy impact

We demonstrate the interest of adopting the GENPACK
strategy for a cloud data center by comparing its energy im-
pact to the default SWARM strategies. We rely on BITWATTS
probes to continuously report on the container’s and node’s
power consumption. Figure 14 shows our results. We present
the normalized results against the spread baseline. While
the binpack strategy saves up 9% of energy compared to
spread default built-in strategy, GENPACK outperforms the
existing strategies by saving 23% of the cluster consump-
tion. These impressive results are due to the capability of
GENPACK of i) packing efficiently system containers onto
a reduced number of nodes per generation and ii) turning
off unused nodes in each of the generations. This result
suggests that the GENPACK approach can lead to sensible
savings for cloud data centers. In particular, our evaluation
based on real-world traces considers a large diversity of jobs’
durations and profiles as well as incoming workloads, even
though we could not inject the full Google Borg Trace.

We can also observe that the deployment of additional
containers for monitoring the resource consumptions and
computing the container envelopes does not penalize the
power usage efficiency of GENPACK. We can therefore
conclude that GENPACK can achieve the same performances
as existing scheduling strategies of DOCKER SWARM, but at
a drastically reduced cost.

VIII. RELATED WORK

Resource management and scheduling is an important
topic. Many researchers have addressed various aspects of
scheduling resources during the last decades. Scheduling has
been addressed in the context of GRID computing [19],
distributed systems [20], HPC [21], batch processing [22],
MapReduce [23], and more recently in the context of
VM [24] and container scheduling [25] in large clusters.
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Distributed job schedulers like the CONDOR sched-
uler [20] performs a match making between a job waiting to
run and the machines available to run jobs. Hence, each job
explicitly describes its resource requirements and also a rank
expression that permits the scheduler to select the machine
that is most suited to run this job. Also, the resources of a
machine have to be explicitly described. In GENPACK, we
avoid the need to describe jobs and machines by performing
an automatic profiling of the containers and nodes (cf.
Section IV).

The OPENSTACK NOVA scheduler does not consider CPU
load for the assignment of VMs [24]. The scheduling in
OPENSTACK, no matter the selected strategy, is rather based
on statically defined RAM and CPU size of the VM, known
as flavors [24]. In our experience, the simple round-robin
scheduler results in many cases in situations where all hosts
run some VMs and none of the hosts can be switched off
to reduce the energy consumption (cf. Section II).

OPTSCHED [26] compares the energy implications of a
round robin scheduler, a first fit scheduler, and an optimized
scheduler that knows the run time of (some of) the VMs
upon scheduling. Knowing the run times before starting a
VM helps reduce the total energy consumed by a cluster.
In GENPACK, however, run times are not known a priori
and GENPACK is able to automatically learn the profile that
is used by the scheduler along generations to improve the
energy efficiency of the cluster (cf. Section VII).

YARN [23] is a two-level scheduler that can handle
multiple workloads on the same cluster. It is request-based
and supports locality of scheduling decisions such that jobs
can, for example, access data on local disks to avoid remote
accesses via the network. Nonetheless, the scheduling in
YARN implements a strategy close to the spread strategy of
DOCKER SWARM, thus suffering from the same limitations
in terms of power usage efficiency.

Google developed a series of container management sys-
tems during the last 10 years [25]: BORG, OMEGA, and
more recently KUBERNETES. Initially, Google started with
a centralized container management system called BORG,
which remains the main system in use by Google [7].
OMEGA is based on the lessons learned from BORG and
has a principled architecture that includes a centralized
transactional store and an optimistic concurrency control.

In particular, the OMEGA architecture supports multiple
concurrent schedulers. Finally, KUBERNETES is an open
source container system that focuses on simplifying the task
of application developers and has less focus on maximizing
the utilization of clusters—which is the focus of OMEGA
and BORG. Compared to GENPACK, all these approaches
does not incorporate the concept of generations within the
cluster to automatically learn about the container profiles at
runtime.

DOCKER SWARM is very similar to KUBERNETES in
that it aims to support cloud native applications. SWARM
permits users to define applications consisting of a set of
containers. The focus is on simplifying the typical tasks of
the application developers like load balancing, elasticity, and
high availability. Unlike GENPACK, the main goal of Swarm
is not on ensuring a high utilization of a compute cluster,
but this paper demonstrates how we succeed to extend it in
order to address this concern.

IX. CONCLUSION

Efficient VM or container scheduling is particularly crit-
ical in cloud data centers to not only provide good perfor-
mance, but also minimize the hardware resource required for
running concurrent applications. This can, in turn, reduce the
costs of operating a cloud infrastructure and, importantly,
reduce the associated energy footprint. In particular, when
efficiently packing containers on physical hosts, one can save
significant amounts of energy by turning off unused servers.

In this paper, we propose GENPACK, a new scheduler
for containers that borrows ideas from generational garbage
collectors. An original feature of GENPACK is that it does
not assume the properties of the containers and workloads to
be known in advance. It relies instead on runtime monitoring
to observe the resource usage of containers while in the
“nursery”. Containers are then run in a young generation
of servers, which hold short-running jobs and experience
relatively high turnaround. This collection of servers can
also be elastically expanded or shrunk to quickly adapt
to the demand. Long-running jobs are migrated to the old
generation, which is composed of more stable and energy-
efficient servers. The containers in the old generation run for
a long time and typically experience relatively even load,
hence they can be packed in a very efficient way on the
servers without need for frequent migrations.

We have implemented GENPACK in the context of
DOCKER SWARM and evaluated it using a real-world trace.
Our comparison against SWARM’s built-in schedulers shows
that GENPACK does not add noticeable overheads while
providing more efficient container packing, which can result
in important energy savings.

Our perspectives for GENPACK includes a careful sen-
sitivity analysis of key parameters like the k-means value
or the scheduling period. We also plan to evaluate the
performances of GENPACK in a long-running deployment

GenPack
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“Only four languages
maintain the same
energy and time rank
(OCaml, Haskel, Racket,
and Python), while the
remainder are completely
shuffled.”

when manipulating strings
with regular expression,
three of the
five most energy-efficient
languages turn out to be
interpreted languages
(TypeScript, JavaScript,
and PHP),

“Although the most
energy efficient language
in each benchmark is
almost always the fastest
one, the fact is that there
is no language which is
consistently better than
the others,”
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My talk in 180 seconds
• ICT energy consumption will keep growing

• More and more digital services (in all domains)

• Hardware keeps improving energy efficiency
• But hardware is driven by software

• Software is eating the world, and beyond
• Everything is software-defined

• Énergy ≈ performance (time)
• Relationship: it’s complicated

• Needs to work on all the layers of an infrastructure
• Each layer = a software to optimize
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