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Example: Identifying potential drug targets

target(s)
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We need to make smarter choices



We need to make smarter choices

Ask a human? Humans steer HPC, HPC performs simulations
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We need to

Ask a human? Humans steer HPC, HPC performs simulations
But: Humans are slow and are not getting faster
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Substitute Al "agents” for human as decision-maker

1) Al agents are trained on all available data prior to computational experiment
— E.g., data from scientific literature, results of previous simulations

2) Al agents are updated as computational experiment proceeds
— They gets “smarter” as more data are acquired
— Requires periodic retraining of Al models

3) Updated model makes smarter choices over time
— Active learning, Bayesian optimization, surrogate optimization, optimal
experimental design



Example 1: Redox flow batteries

Energy stored in molecules that .
hold electric charge: “gas tank” Cheaply upgrade storage capacity —
: Just buy a bigger gas tank and more gas
Current Cellector 1000 \
Anolyte Tank i Catholyte Tank Frequency
A 4 regulation
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E Renewdble
& 100 integration
17
o
O
Storage for
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Pump “lon-Selective
Mot
embrane 10
0.01 0.1 1 10 100

Storage Time (h)

Store/release energy at the current collector: “engine”

Key problem: What molecules do | use to hold electric charge? (“fuel”)

Figures: (left) Wikipedia, (right) V. Srinivasan (Argonne)
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Simplified design problem
Entities: 10° molecules in QM9 Resources: 1024 KNL nodes, ALCF Theta

Possible Tasks:

1. : lonization potential (NWChem, B3LYP/3-21g, 6 node-hr/mol)
2. Inference: Estimate ionization potential (MPNN, 3x10~° node-hr/mol)
3. Training:  Retrain MPNN with latest dataset

Objective Function: # molecules with high ionization potential (IP > 10V)
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Building ML-guided applications: The Colmena framework

Problem: We have many policy ideas, e.qg.: / Event-triggered

— Submit a new simulation once another completes Conditional logic

— Retrain a model after each 8 successful computations Resource
— Allocate more nodes to inference after models finish training«—| management

Solution: Program agents to encode such policies
1. Can react to events
Can hold state

2.
3. Can re-allocate resources between pools
4. Separate agent from how to run tasks and interface with HPC

L. Ward et al., MLHPC Workshop, 2021: https://arxiv.org/abs/2110.02827
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Colmena system guiding exploration of electrolyte design space

Running “exploratory” simulations

Better performance after
scoring completes

Atomization Energy (Ha)

1000 2000 3000
Walltime (s)

Running random guesses at first

L. Ward et al., MLHPC Workshop, 2021: https://arxiv.org/abs/2110.02827
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Even on this simple problem, good scientific performance
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Found 10% more high-performing molecules with same allocation size

L. Ward et al., MLHPC Workshop, 2021: https://arxiv.org/abs/2110.02827
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Policies guide dynamic behaviors
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Exploiting heterogeneous & distributed computers

Molecular Design
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Example 2: Al-enabled molecular dynamics (MD)

Coordinates, contact maps, other features

-

Ensemble MD simulations
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Arvind Ramanthan et al.
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Deep Learning/ Artificial Intelligence\
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Build physically
interpretable embeddings
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sampled more often

| “Interesting conformations”, population sampled |



DeepDriveMD framework for ML steering of MD simulations

Simulation ~ APIOS Stream——  Aggregation
( N\ ( N\
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A. Brace et al., https://arxiv.org/abs/2104.04797
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DeepDriveMD enables 104x acceleration of
sampling effectiveness for FSD-EY (BB a) folding

—— MD-BBA-1 —— DeepDriveMD (ML, no RMSD)
MD-BBA-2 —— DeepDriveMD (no ML, greedy RMSD)
—— Anton-BBA-1 MD Ensemble (no ML, no RMSD)
Anton-BBA-2 —— DeepDriveMD(ML + RMSD)
100+
80 NS ——— > ..
| , ’
DeepDriveMD
607 enables 10%x speedup

Sampling ratio (%)

10°* 107 107 107"

Time (us)
A. Brace et al., https://arxiv.org/abs/2104.04797

10° 10

SN

Embedding states into the VAE latent
space and clustering with k-means keeps
a constant definition of the number of
states sampled enabling fair comparison
between simulations

The ML + RMSD strategy reaches 80%
sampling more than 1000x faster (in
total simulated time) than Anton-1
simulations

Note: Uncertainty from 10 trials in light red
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Increasingly diverse data + compute “flows” ...
linking HPC with the computing continuum

Data collection Al model Al model Data collection Data collection & Ptychographic
& transfer training deployment & transfer (raw) transfer (position) reconstruction
[

&2 =
Accelerators

High-energy diffraction microscopy
Data collection Data reduction, Catalog &
& transfer refine structures publish

Ptychography

“Metacomputing” revisited
1010 x faster

] . 5
Serial Injector 10° x more tasks

synchrotron
crystallography |/

106 x more data
Link HPC, Al, instruments
cstill 3x 108 m/s ®




Globus
Automation
Services

Reusable flows
composed from
an extensible
set of actions

Built on global
auth, compute,
data fabric
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Globus
Automation
Services

Reusable flows
composed from
an extensible
set of actions

Built on global

auth, compute,

data fabric

https://arxiv.org/abs/2204.05128
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funcX: A managed research acceleration service that
iImplements a universal computing fabric

def F(in args):
# do something &
return results s Run functions

\
fxc.register function (F) w

Register functions

f = fxc.run (“A”,
endpoint id=ep,
function 1id=F)

Deploy funcX agent

R = fxc.get result (f)
$ pip install funcx-endpoint

o
i
1

$ funcx-endpoint configure myep

Density (%)

o
N

o
(=

$ funcx-endpoint start myep

T T
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T T
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Latency (s)
Z. Li et al., https://doi.org/10.48550/arXiv.2209.1163 thttps://funcx.org ~ “siecin”  “precion”

extraction prediction

6 50 55

(c) DIALS stills (d) tomographic (e) correlation
process preview spectroscopy



https://funcx.org/
https://doi.org/10.48550/arXiv.2209.11631

Al + HPC: Implications and opportunities

= Many important problems cannot be addressed via simple scaling of resolution,
realism, timescale, number of ensemble members

- Need data-informed “intelligence” to guide exploration of large search
spaces and/or produce custom approximations for expensive computations

* New challenges for Al:
— Representing complex search spaces
— Rapid integration of data of varying degrees of accuracy

» Important implications for HPC hardware and software systems:
— Dynamic creation and management of many tasks
— Heterogeneous workloads: simulation, training, inference
— Many data-intensive, latency-sensitive computations
— New services needed to link HPC with computing continuum

» Implications for discovery processes:
— Documenting and validating results; the role of human judgement
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