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Research Directions

* Foundational research themes of

Scientific Machine Learning

SC i e nt ifi C M a C h i n e Le a r n i n g CoreTechnologies forArtiﬁciarl Intelligence

* Opportunities for Scientific Machine
Learning impact

Prepared for US,
Department of Energy
Adbanced Scientifc
Compurting Research

U.S. DEPARTMENT OF

ML methods for multimodal data
in situ data analysis with ML
ML to optimally guide data acquisition

Domain.aware physical principles & symmetries
leveraging & respecting physics-informed priors
scientific domain knowledge structure-exploiting models

Data-intensive
sci M L scientific inference & data analysis

Capabilities

SciML

Foundations

Machine ML-enhanced ML-enabled adaptive algorithms

mOdellng & sim ML parameter tuning

ML-hybrid algorithms and models L\ -based multiscale surrogate models

model selection
exploiting structure in high-dim data

Machine Interpretable

explainable & understandable results

Learning
for Advanced for better scientific computing tools
Scientific

uncertainty quantification + ML

for Advanced
Scientific
Computing
Research

Computin P P
Resga I'Chg Intelllge_n_t automation exploration of decision space with ML
& decision support ML-based resource mgt & control

automated decision support, optimal decisions for complex systems
adaptivity, resilience, control .

Robust probabilistic modeling in ML

stable, well-posed & quantifying well-posedness

reliable formulations reliable hyperparameter estimation

1

1

1

1

1

1

1

1

1

: I
Learning :
1

1

1

1

1

1

1

1

t



Sample of Applications of Interest
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Research Thrust: Domain Awareness

Incorporation of domain knowledge into unsupervised SciML
and model feature selection
— Features should be representative, interpretable, and generalizable

Incorporation of domain knowledge into supervised SciML

— Hard constraints: imposition of constraints that cannot be violated
(enforced during training, projection into the constrained region)

— Soft constraints: modify the objective function constraints used in
training

— Model form (e.g. symmetries and scaling in kernel approaches)

Modeling and representing domain knowledge in SciML

— modeling languages and frameworks that facilitate the inclusion of
domain knowledge into the training process



Research Thrust: Interpretability

Exploring high-dimensional complex data

— methods that provide users with insights into data characteristics
beyond traditional statistical indicators

Exploring and understanding SciML models

— rationalize or explain the relationship between the input, operation,
and output

— decision process for interpretable human-meaningful and human-
manageable steps

Expressing differences between SciML models, inputs and

results

— assist in the characterization of complex data sets

— comparison of models at large scales



Research Thrust: Robustness

* Implementing reproducibility in SciML

— an independent research group should be able to replicate the
findings of another

— “less than 50% of academic research by drug companies is
reproducible”

e Conditions for “well-posedness”

— models and algorithms that are insensitive to perturbations

* Assessing the robustness, performance and quality of SciML

— decision (classification) or a prediction: traditional measures of
acceptance are often heuristic

— a priori and a posteriori error estimates would be transformative
— algorithms that have proven convergence rates



Research Thrust: Data-Intensive SciML

Extracting structures from high-dimensional data and complex
models

— improved methods for discovering sparsity and low-rank structure

— learning underlying geometry beyond PCA

— approaches for data compression or dimension reduction

Efficiently sampling complex and high-dimensional spaces

— improved methods for sampling, optimization, and integration in high-
dimensional spaces

— methods to allow the use of models at varying degrees of fidelity
Achieving robustness in noisy and complex data

— maximize the amount of learning from the available scarce data

— data collection or generation procedures (observation/computation)
to minimize the amount of data required and the associated costs



Research Thrust: Enhanced Modeling and Simulation

* Enabling adaptive scientific computing

— improve the performance and throughput of numerical simulations
through ML (e.g. by changing solver parameters)

— ML to help in the choice of data layouts and architecture-aware
algorithm implementations

 DOE’s Scientific Computing help to SciML
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— co-design of new and adaptation of existing SciML algorithms for
different computer architectures



Research Thrust: Intelligent Automation and Decision Support

ML to intelligently guide data acquisition
— ML methods for optimal data acquisition strategies for applications of
optimization, UQ, and sensitivity analysis
ML to improve outcomes from science facilities

— real-time monitoring of experiments (x-ray light sources, neutron
scattering, magnetic fusion facilities, particle accelerators)

— ML-based systems to track real-time telemetry data and predict
failures of computational nodes



Numerical Calculations in SciML

* Matrix computations
* Numerical algorithms at large scale

— Linear solvers Simplified taxonomy, from Machine Learning and
Understanding for Intelligent Extreme Scale Scientific

— Optimization a|gorith ms Computing and Discovery Report, 2015

— Eigenvalue problems

— Co-design

Supervised Unsupervised
Learning Learning

* Multi-precision algorithms

Dimensionality

Classification Regression Clustering Reqiction

Instance based (k-NN, LVQ) OLS, Logistic, Mars, K-means, hierarchical, PCA, ICA, MDS,
LOESS, Ridge, LASSO, EM, GMM, DBSCAN, NMF, CCA, Isomap,

Bayesian (Naive Bayes, BBN)
Elastic Net OPTICS LLE, CX/CUR

Kernel Methods (SVM, RBF, LOA)
Decision Trees (CART,
Random Forest, MARS)
Artificial Neural Nets (Perceptron,
Hopfield network, SOM, Black Prop) 3
) Deep Learning (RBM,
Ensemble Methods (Boosting, DBN, CNN)
Bagging, AdabBoost)

Linear Algebra, Graph Theory, Optimization, Statistical Learning Theory
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Multi-precision Computations
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Abdelfattah et al., A survey of numerical linear algebra methods utilizing
mixed-precision, IJHPCA, Vol. 35, 2021.

Anzt and Luszczek, Accelerating Numerical Software Libraries with Multi-
Precision Algorithms, May 30, 2020, https://youtu.be/uG1L2sICqTs

Anzt, Then and Now — Growing as a child of ECP, plenary talk at ECPAM
2023
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Multi-precision: take-aways (1/2)

(from Anzt and Luszczek webinar)

Performance of compute-bound algorithms depends on format support of
hardware
Performance of memory-bound algorithms is hardware-independent and scales
with the inverse of format complexity
Relative residual accuracy = €k (unit round-off * condition number)
For ill-conditioned problems, we need high precision to provide high accuracy
results.
Only if the problem is well-conditioned, and a low-accuracy solution is acceptable,
we can use a low precision format throughout the complete solution process
Templating the precision format allows to quickly switch between formats

— C++ very powerful in this respect

— Use production-ready libraries templating the precision: Ginkgo, Kokkos Kernels, Trilinos,
etc.

Low precision preconditioners can be used to accelerate iterative solvers
— Preconditioners need to adapt their precision to numerical requirements
— The precision of the preconditioner determines how much accuracy is preserved
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Multi-precision: take-aways (2/2)

(from Anzt and Luszczek webinar)

For memory-bound preconditioners, decoupling the arithmetic precision from the
memory precision provides the runtime savings while preserving a constant
preconditioner
To increase the performance benefits, shift most of the work to the low precision
preconditioner
Mixed precision iterative refinement is a powerful strategy to accelerate linear
solves

— Iterative inner solver e.g. for sparse systems

— Direct inner solver e.g. for dense systems
Mixed precision iterative refinement can also be used for eigenvalue

problems
— Low precision eigenvector approximations as input
— Convergence in high precision after 3-4 IR steps

The performance benefits depend on the problem and hardware
capabilities
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Thank you !
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