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Research Directions

• Foundational research themes of 
Scientific Machine Learning

• Opportunities for Scientific Machine 
Learning impact
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Sample of Applications of Interest
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Research Thrust: Domain Awareness

• Incorporation of domain knowledge into unsupervised SciML
and model feature selection
– Features should be representative, interpretable, and generalizable

• Incorporation of domain knowledge into supervised SciML
– Hard constraints: imposition of constraints that cannot be violated 

(enforced during training, projection into the constrained region)
– Soft constraints: modify the objective function constraints used in 

training 
– Model form (e.g. symmetries and scaling in kernel approaches)

• Modeling and representing domain knowledge in SciML
– modeling languages and frameworks that facilitate the inclusion of 

domain knowledge into the training process
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Research Thrust: Interpretability

• Exploring high-dimensional complex data 
– methods that provide users with insights into data characteristics 

beyond traditional statistical indicators

• Exploring and understanding SciML models 
– rationalize or explain the relationship between the input, operation, 

and output
– decision process for interpretable human-meaningful and human-

manageable steps

• Expressing differences between SciML models, inputs and 
results
– assist in the characterization of complex data sets
– comparison of models at large scales
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Research Thrust: Robustness

• Implementing reproducibility in SciML
– an independent research group should be able to replicate the 

findings of another
– “less than 50% of academic research by drug companies is 

reproducible”

• Conditions for “well-posedness”
– models and algorithms that are insensitive to perturbations

• Assessing the robustness, performance and quality of SciML
– decision (classification) or a prediction: traditional measures of 

acceptance are often heuristic
– a priori and a posteriori error estimates would be transformative
– algorithms that have proven convergence rates
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Research Thrust: Data-Intensive SciML

• Extracting structures from high-dimensional data and complex 
models
– improved methods for discovering sparsity and low-rank structure
– learning underlying geometry beyond PCA
– approaches for data compression or dimension reduction

• Efficiently sampling complex and high-dimensional spaces
– improved methods for sampling, optimization, and integration in high-

dimensional spaces
– methods to allow the use of models at varying degrees of fidelity

• Achieving robustness in noisy and complex data
– maximize the amount of learning from the available scarce data
– data collection or generation procedures (observation/computation) 

to minimize the amount of data required and the associated costs
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Research Thrust: Enhanced Modeling and Simulation

• Enabling adaptive scientific computing
– improve the performance and throughput of numerical simulations 

through ML (e.g. by changing solver parameters)
– ML to help in the choice of data layouts and architecture-aware 

algorithm implementations

• DOE’s Scientific Computing help to SciML
– expertise in scalable numerical algorithms
– inner loop of the SciML training process (optimization algorithms, 

linear algebra solvers) at large scale
– co-design of new and adaptation of existing SciML algorithms for 

different computer architectures
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Research Thrust: Intelligent Automation and Decision Support

• ML to intelligently guide data acquisition
– ML methods for optimal data acquisition strategies for applications of 

optimization, UQ, and sensitivity analysis

• ML to improve outcomes from science facilities
– real-time monitoring of experiments (x-ray light sources, neutron 

scattering, magnetic fusion facilities, particle accelerators)
– ML-based systems to track real-time telemetry data and predict 

failures of computational nodes
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Numerical Calculations in SciML

• Matrix computations
• Numerical algorithms at large scale

– Linear solvers
– Optimization algorithms
– Eigenvalue problems
– Co-design 

• Multi-precision algorithms
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Simplified taxonomy, from Machine Learning and 
Understanding for Intelligent Extreme Scale Scientific 
Computing and Discovery Report, 2015



Multi-precision Computations

• Abdelfattah et al., A survey of numerical linear algebra methods utilizing 
mixed-precision, IJHPCA, Vol. 35, 2021.

• Anzt and Luszczek, Accelerating Numerical Software Libraries with Multi-
Precision Algorithms, May 30, 2020,  https://youtu.be/uG1L2slCqTs

• Anzt, Then and Now – Growing as a child of ECP, plenary talk at ECPAM 
2023
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https://youtu.be/uG1L2slCqTs


Multi-precision: take-aways (1/2)

• Performance of compute-bound algorithms depends on format support of 
hardware

• Performance of memory-bound algorithms is hardware-independent and scales 
with the inverse of format complexity

• Relative residual accuracy = 𝜀𝜀𝜀𝜀 (unit round-off * condition number)
• For ill-conditioned problems, we need high precision to provide high accuracy 

results.
• Only if the problem is well-conditioned, and a low-accuracy solution is acceptable, 

we can use a low precision format throughout the complete solution process
• Templating the precision format allows to quickly switch between formats

– C++ very powerful in this respect
– Use production-ready libraries templating the precision: Ginkgo, Kokkos Kernels, Trilinos, 

etc.
• Low precision preconditioners can be used to accelerate iterative solvers

– Preconditioners need to adapt their precision to numerical requirements
– The precision of the preconditioner determines how much accuracy is preserved
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(from Anzt and Luszczek webinar)



Multi-precision: take-aways (2/2)

• For memory-bound preconditioners, decoupling the arithmetic precision from the 
memory precision provides the runtime savings while preserving a constant 
preconditioner

• To increase the performance benefits, shift most of the work to the low precision 
preconditioner

• Mixed precision iterative refinement is a powerful strategy to accelerate linear 
solves

– Iterative inner solver e.g. for sparse systems
– Direct inner solver e.g. for dense systems

• Mixed precision iterative refinement can also be used for eigenvalue 
problems

– Low precision eigenvector approximations as input
– Convergence in high precision after 3-4 IR steps

• The performance benefits depend on the problem and hardware 
capabilities
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(from Anzt and Luszczek webinar)



Thank you !
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