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Classical Data Management -- Parallel Database Systems
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Davidson et al 2006

http://prod.sandia.gov/techlib/access-control.cgi/2006/061853.pdf


Modern Data Management -- MapReduce

4

Dean and Ghemawat 2008

http://dx.doi.org/10.1145/1327452.1327492


Big Data is Everywhere in Business

http://mattturck.com/bigdata2017/ 5

Is there anything special in scientific 
applications?



Schematics of 
Distributed Acoustic 
Sensing: using the back 
scattering to deduce the 
motion of the fiber optic 
cable.  Sample 
applications are shown 
below.

Subsurface Related Applications
Distributed Acoustic Sensing (DAS) turns fiber optic cable into high-
precision seismic sensors.  It is being studied for a variety of 
applications that monitors earthquake, soil properties, permafrost, oil 
production, oil transport pipelines, and so on.  It promises to save 
lives by improving earthquake prediction and boost economy by 
improving production from hydraulic fracturing.
State of Art
DAS are deployed in several demonstrations and are producing 
hundreds of terabytes of data per installation.  The data collected are 
typically returned to data centers by transporting the hard drives from 
field.

Major Challenges: processing the volume of data collected at the 
sensor
As illustrated in the data processing workflow on the right (middle), 
the pre-processing and interferometry step needs to ingesting 
petabytes of raw sensor data, reducing the raw data into 
interferometry data in the field will dramatically reduce the volume of 
data to be transported and make DAS more effective tool.

From J Ajo-Franklin, V R Tribaldos, and J Wu

Dou, et al. 2017. Nature Scientific Report.

Earthquake detection Oil well monitoring Oil pipeline monitoring

Is Scientific Data Different?
Ex 1: Remote Sensing à Complex Computation
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https://www.nature.com/articles/s41598-017-11986-4


Environment and Agriculture
Advances in monitoring technologies for environment, hydrology 
and agriculture will increase the volume of data produced and 
making real-time streaming analysis an essential to these scientific 
and engineering activities.
State of Art
Data collection, processing, integration and dissimilation are ad 
hoc and require considerable amount of manual processing 
involving many different data management systems

Major Challenges
• Environmental monitoring results such as water level (top right 

image) could change quickly, effective real-time analysis and 
reporting is critical to human life and safety

• New generation of data collection tools such as Nanopore (lower 
left image) is anticipated to produce many gigabytes of data per 
sample.

• How to effectively integrate data from multiple sources in the 
field is a unique challenge

Images from B Brown, C Varadharajan, and W Collins

Precision Agriculture and 
Environment Management: multi-scale 
data (from DNA-scale to whole 
watershed) requires smart data 
integration, some of which need to 
performed at the edge  in order to avoid 
massive data movement

Is Scientific Data Different?
Ex 2: Precision Agriculture à Multiple Data Sources
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Schematics of ESnet: ESnet is the backbone 
network connecting large DOE science facilities and 
national laboratories.  As many scientific activities  
have become more collaborative, ESnet has grown to 
support DOE’s participation in international 
collaborations such as LHC  and ITER.  AI at the 
Edge would play a critical role to make the future 
ESnet self-managing and self-healing.

Self-Managing and Self-Healing Future Esnet
ESnet is the backbone network connecting DOE Office of 
Science facilities. It is responsible for  moving petabytes of 
data per week.  The data rate has been doubling every 18 
months.
State of Art
Much of network management is still labor-intensive, lots of 
potential to automate mundane tasks

Major Challenges
• More sites and more variety of devices are being 

connected to ESnet.  The networking components are 
becoming more “software-defined,” which requires more 
software control and offers more opportunities for 
automation.  

• Distributed real-time control would be important to achieve 
the self-managing and self-healing vision.

From Mariam Kiran, Chin Guok, and John Wu

Is Scientific Data Different?
Ex 3: Smart Infrastructures à Real-time Control
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Connected Vehicles and Infrastructure: DOE is conducting research 
and development that investigates how disruptive forces such as 
automated, connected, electric and/or shared (ACES) vehicles will impact 
energy consumption in transportation. It also helps communities determine 
how they can plan for and encourage energy efficiency increases in 
mobility.
Image courtesy DOE Vehicles Technology Office (VTO) 
https://www.energy.gov/eere/vehicles/energy-efficient-mobility-systems

Connected and Autonomous Mobility System
DOE is conducting research and development that investigates how 
disruptive connected and autonomous vehicles will impact energy 
consumption in transportation. These efforts will result in large 
amounts of data being generated by many disparate types of sensors 
located both on vehicles and infrastructure.
State of Art
Offloading limited amounts of data to data-centers often performing 
shallow analysis.

Major Challenges
As connected, autonomous vehicles begin to be deployed the amount 
of data generated will grow enormously. It will no longer be possible to 
perform all analysis at a central location. Edge computing will be a 
necessary component to leveraging all data created and making real 
time decisions.
The collection sensors deployed will be disparate and thus will require 
different types of edge AI resources. This will necessitate an edge 
infrastructure capable of supporting and integrating heterogeneous 
resources involving many autonomous vehicles interacting with traffic 
signaling system and electric power grid among others, and thus 
requiring an effective way to integrate systems of systems.

Is Scientific Data Different?
Ex 4: Systems of Systems à Decentralized Control
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https://www.energy.gov/eere/vehicles/energy-efficient-mobility-systems


Ex 5: Self-driving Biology Lab

Source data and results need to move freely and 
quickly among components of the lab and 

supporting equipment

Possible new requirements:
(1) Large volumes of data, (2) In situ data transport, 

and (3) Efficient On-line control

AI for Science report, Ch 3
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https://publications.anl.gov/anlpubs/2020/03/158802.pdf


FasTensor: Designed to Address Two Fundamental Challenges

Light Source
180 PB/year

(ALS-U at Berkeley Lab )

Genomics
10 PB/year

High Energy Physics
200 PB/year

Climate
100 EB/year

Sources: L. Nowell, D., Ushizima, S. Byna, JGI and ALS at LBNL, etc.

Most are multidimensional arrays, stored in file 
formats like HDF5, PNetCDF, ADIOS, etc 

(1) Size à parallelization

(2) Organization à files
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Why FasTensor: Scientific Data in Arrays

• Approach 1: a database system 
for scientific applications, e.g., 
SciDB

• SciDB features:
– Array-oriented data model
– Append-only storage
– First-class support for user-defined 

functions
– Massively parallel computations
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Cudre-Mauroux et al 2009

http://portal.acm.org/citation.cfm?id=1687553.1687584


Approach 2
• Relational parallel query processing directly 

on scientific file formats
• Using database technology requires costly 

loading of data and converting results

S. Blanas, K. Wu, S. Byna, D. Bin, A. Shoshani, SIGMOD 2014

Time to insight for a PTF query: 150X faster than 
PostgreSQL and 10X faster than Hive

Overview of 
SDS/Q, the 
querying 
component of 
the Scientific 
Data Services 
framework.

Why FasTensor: Scientific Data in Files
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https://doi.org/10.1145/2588555.2612185


Why FasTensor: Slow Operations in MapReduce
Convolution on a 2 by 4 2D 
Tensor (Array)

Kernel is 2 by 2
1. Mismatched Data Model

-- Convert Tensor to KV list at Map stage

2. Expensive reduce 
-- Duplicate KV for Reduce stage

More details at "SLOPE: Structural Locality-aware Programming 
Model for Composing Array Data Analysis", ISC 2019
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FasTensor: New Data-Parallel Programing Model on Arrays

Inspiring by: a Tensor is a multidimensional array with transformations

FasTensor is a generic parallel data programming model

Tensor =  Multidimensional Array + Transform Rules

User Defined Function (UDF)

Array
B C

UDF_1 UDF_2

A

B = A→Transform(UDF_1) C = B→Transform(UDF_2)

Data Model

15



➔ Multidimensional Array Model
◆ Disk (e.g. HDF5, ADIOS, netCDF) 
◆ Memory (e.g., DASH)

➔ Flexible Stencil Data Structure
◆ Flexible UDF functions

➔ Execution Engine
◆ Auto-parallel: MPI/OpenMP/hybrid
◆ Optimized Chunking Size 
◆ Optimized Ghost Zone 
◆ In-place Modification Semantic
◆ Fault-tolerance Support

How FasTensor works
Stencil

● Base Cell
● Neighbor Cells -- relative offset(s)

Example: define a sequential Sum
as udf_Window_Aggregates() 
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Stencil: Abstract Data Type
Stencil
● An abstract data structure to represent a neighborhood of an Array
● Definition:  S(Base Cell,  Neighbor Cells -- relative offsets)

Flexible geometric shapes to represent patterns of computation

...

Structural 
Locality

17



An Example of 3-point Moving Average (vt-1+vt+vt+1)/3

Vt-1 + Vt + Vt+1

3

Input Array A,  a 2D 16 x 16 dataset 
in HDF5 file, where each row is a 
time series from a sensor

Output Array B, a 2D dataset in HDF5 file

Rules of the Transform from A to B

Execute the Transform,
either sequentially or in parallel

Relative offsets
18



Data Analysis Challenges

Distributed Acoustic Sensing and its Data Analysis
DAS: Distributed Acoustic 
Sensing

● DAS data size is large (TB/day), but 
scattered among many files

● Different analysis operations are required in 
different DAS data investigations. 

● Record strain or strain-rate along fiber-optic 
cables in subsurface

● Provides high spatial and temporal
resolutions for geoscience, e.g., earthquake 
detection, seismic imaging

19



Task 1: Extract Earthquake Signals through Similarity
● Use local self-similarity calculation to identify earthquakes
● Could detect small earthquakes frequently missed

Dong, Bin, V. R. Tribaldos,  etc. IPDPS 2020

What FasTensor brings:  
- Efficiently handling deep ghost zone (~500 
layers)
- Easy parallelization 20

FasTensor

Scaling of FasTensor

Horizontal line == earthquake
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https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00035


Task 2: Detect Even Smaller Earthquakes with Template 
Matching
● For earthquakes less than magnitude 3, the above self-

similarity approach is not sensitive enough
● Since earthquakes emanating from the same fault locations 

are likely to have the same wave form, could use a stronger 
quake as the template to find a weaker one by matching 
their shapes

● The matching is computed as similarity between a template 
and moving windows of observation data à VERY MANY 
similarity calculations

● Use FasTensor to parallelize the calculations (on-going 
work)

21



Template 
Matching 
Example

• Threshold = 12*std + 
median
• 354 detections above 
threshold in unique 4 s 
windows
• 423 total earthquakes in 
catalog in this 10-hour 
period
• CC == cross correlation

22



Previously 
unknown
earthquake 
example
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FasTensor Summary
Scientific Achievement
FasTensor, a data parallel execution engine for user-defined 
analysis, significantly reduces programming effort for various 
scientific analysis operations. It outperforms popular Big Data 
platforms such as Spark by ~50X to ~90X in executing machine 
learning computations.
Significance and Impact
FasTensor has been evaluated using:

● Earth science for detecting earthquakes and other subsurface events
● Fusion science for tracking field evolution
● Climate data analysis with Convolutional Neural Network (CNN) to 

predict extreme weather events 
Research Details
FasTensor programming model consists of: 

● Simple data model (i.e, Stencil) abstraction well known in numerical 
computing

● Single operator (i.e., Transform) to execute user-defined analysis
● An execution engine for automatic parallelization 

IPDPS 2020, ISC 2019, SSDBM 2019

Performance comparison of FasTensor with Spark for completing 
CNN (CONV, Pooling and ReLU) on a 2D climate (CAM5) data

FasTensor website: 
https://sdm.lbl.gov/fastensor/

Book
(Springer 
2021)
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https://doi.org/10.1109/IPDPS47924.2020.00035
https://doi.org/10.1007/978-3-030-20656-7_4
https://doi.org/10.1145/3335783.3335805
https://www.springer.com/gp/book/9783030707491
https://www.springer.com/gp/book/9783030707491
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My Team -- Scientific Data Management at Berkeley Lab

More info --
• http://sdm.lbl.gov/
• http://crd.lbl.gov/sdm/
• https://www.facebook.com/sdmberkeley/
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