
How Much can we Really
Compress Scientific Data?

Franck Cappello
Argonne National Laboratory

University of Illinois at Urbana Champaign

CCDSC 2022

Arkaprabha Ganguli (Michigan State University),
David Krasowska(Clemson),
Julie Bessac (ANL), Sheng Di (ANL), Robert Underwood (ANL),
Xiaodong Yu (ANL,
Jon C. Calhoun (Clemson)

Progress
CCDSC 2018

CCDSC 2016

Lossy compression of scientific data
• Consist in reducing scientific data volume by leveraging correlations and reducing

precision (lossless compression does not reduce scientific data enough)

• Compression ratios (with current compressors) vary depending on use-cases, typically:
• CR=5 for hard to compress dataset and demanding data/analysis quality preservation
• CR=10-100 for scientific data presenting high correlation and medium data/analysis quality

preservation
• CR=x100 for visualization (low data/analysis quality preservation)

• Goal: keep the same science (satisfy user’s quality requirements WRT QoIs – features)
• WARNING: You will see images because this is the easiest way to show distortion

but compression of scientific data is NOT for images

• Getting significant traction in the scientific community (climate, cosmology, seismic,
etc.), IoT community as well (sensors, EKG)

Progress in Compression Techniques

Huge Progress in performance in the past 5-6 years

original SZ1.0
CR=114

SZ2.1
CR=115

SZ1.3
CR=107

SZ1.4
CR=114

SZ2.0
CR=115

SZ3-QoZ
CR=540

SZ3.1
CR=291

ZFP0.5
CR=101

SZ2.1
CR=285

2022 20162022 2017 20172017

20222018 2019 2019 2021

Visualization of Miranda - density data for SZ’s different versions (EB: VRAE 1E-2), Performance on single core CPU (Intel Broadwell)

Evolution of SZ compression quality and performance using a large-eddy simulation of multicomponent flows
with turbulent mixing: Miranda - density field.

SZx compresses at 300GB/s on NVIDIA A100 à Bottleneck is not compression but PCIe

75MB/s 80MB/s 95MB/s

140MB/s 200MB/s 200MB/s 110MB/s 100MB/s

More Lossy Compressors
ZFP (LLNL): Transform (DCT)

ECP ZFP

Overpreserves data, lower

Compression ratio compared

to SZ, Better speed.

SPERR (NCAR): Wavelet

Works well on wave

propagation problem

(Climate, Seismic)

MGARD (ORNL)

ECP CODAR

Multigrid adaptive

reduction

MGARD controls the

compression errors in

quantities of interest (!):

Linear expression of the error

Compressor Pearson R^2 Spatial Error KS-test

SZ_Interp 93 93 21

SZ (regression) 14.34 14.34 14.34

ZFP 5.45 5.45 2.36

MGARD 27.1 4.69 X

MGARDx 14.7 6.49 X

TThresh 16.1 16.1 2.98

BitGrooming 1.51 1.51 1.51

Digit Rounding 1.86 1.86 1.86

FPZip 1.95 1.95 1.95

NDZip 1.64 1.64 1.64

Zstd 1.35 1.35 1.35

Largest Compression Ratio For Each Compressor that
Satisfies Each Pinard et al (2020) Requirements

More Lossy Compressors

Autoencoders

12 residual blocks
for feature extraction
+ 3 compression layers

Significant

Smoothing

Overall architecture of
convolutional autoencoder
(A. Glaws, R. King, and M.
Sprague, “Deep learning for
in situ data compression of
large turbulent flow
simulations,” Physical Review
Fluids, vol. 5, no. 11, p.
114602, 2020.)

TTRESH (LLNL):

HoSVD (Tucker Decomposition)

Quantize the Core tensor

Very high compression ratio

Tendency to blur the overall data

(loose details)

1 or 2 orders of magnitude slower

than SZ or ZFP

Compressor Pearson R^2 Spatial Error KS-test

SZ_Interp 93 93 21

SZ (regression) 14.34 14.34 14.34

ZFP 5.45 5.45 2.36

MGARD 27.1 4.69 X

MGARDx 14.7 6.49 X

TThresh 16.1 16.1 2.98

BitGrooming 1.51 1.51 1.51

Digit Rounding 1.86 1.86 1.86

FPZip 1.95 1.95 1.95

NDZip 1.64 1.64 1.64

Zstd 1.35 1.35 1.35

Largest Compression Ratio For Each Compressor that
Satisfies Each Pinard et al (2020) Requirements

Feature detection
Wavelet Transform

Resolution coarsening
Linear regression predictor

Lorenzo Predictor
Spline interpolation predictor

Pattern based predictor
Auto-encoder predictor

Linear quantization
Log transform

Huffman coding
Arithmetic coding
Leading bit coding

Truncation
Zstd

S
Z

 L
ib

ra
ry

 o
f

c
o

m
p

re
s
s
io

n
 a

lg
o

ri
th

m
s

Data Analysis

User requirements

SZx

SZ-Interp

SZ 2.1 (default)

SZ-Pattern

Lossy compressor
composition

Lossy compressor
parameters

SZ-separatorSZ 3 (C++) library of algorithms
for lossy compression and examples
of SZ compressors built from the
library of algorithms.

To compose and tune a compression
pipeline we analyze the data to
compress and user requirements in
compression speed, ratio and
accuracy.

What makes SZ3 different: a Highly Modular/
Customizable Compression Framework

LCLS

Progress in Applications and
Methodology

Many more Applications (than in 2018)
• Climate
• Combustion
• Cosmology
• Deep Learning

• Activation data
• Model coefficients
• Training data

• Extreme Weather
• Fusion Energy
• Hydrodynamics
• IoT
• Light Sources (Physics

Instruments)
• Materials Science
• Molecular Dynamics
• Quantum Chemistry
• Quantum Circuit Simulation
• Seismic Imaging

Many more Use-cases (than in 2018)
We are seeing an increasing diversity/number of use-cases

“Classic” use-cases:
1) Visualization

2) Reducing storage footprint (offline compression)

3) Reducing I/O time (on-line, in-situ compression)

Recently identified use-cases:
4) Reducing streaming intensity (recent for generic floating-point compressors)

5) Lossy checkpoint/restart from lossy state

• reduce checkpoints footprint on storage – adjoint, accelerate checkpointing

6) Re-computation Avoiding by reducing the memory footprint à GAMESS

7) Running larger simulations by reducing the memory footprint
8) Accelerating CPU/GPU – memory transfer

9) Reduce DNN model size

10) Accelerate training (I/O read time) of DNNs
Cappello, F., Di, S., Li, S., Liang, X., Gok, A. M., Tao, et Al., Use cases
of lossy compression for floating-point data in scientific data sets. The
International Journal of High Performance Computing
Applications, 33(6), 1201–1220, 2019

Huge Progress in Methodologies
https://sdrbench.github.io/ https://github.com/robertu94/libpressio

https://github.com/CODARcode/Z-checker

Putting all Together
example: LCLS/Crystallography

Context: LCLS II. Goal: Definition of reduction method
Detector produces:
• 2D images @ 250GB/s
• 4M pixel/event unsigned integers, in binary XTC2 format

Compression objectives: CR of 10 or more with error bound @ 500 MB/s/core
à RoiBinSZ algorithm (regions of interest extraction + background
binning + SZ background compression)

Example of Success Story: Crystallography

Ro
iB

in
SZ

c o
m

pr
es

si
on

 p
ip

el
in

e

Data from detector

Peak finder

Mask regions of interest

Extract background

Low pass filter (binning e.g. 2x2)

Rebuild image

Compress background (SZ 2.1)

Indexing

Merge

Phase

Refine

Image

With Chuck Yoon: Stanford

1: X-ray Beam 2: Diffraction 3: Reduction

Roibin SZ on Se-SAD SFX Dataset (Selenium)
selenobiotinyl-streptavidin on a cspad detector

Original Riobin SZ

Total compression ratio 1 70.65

Number of hits 744,150 744,150

Number indexed 255,065 255,918

Rsplit ↓ 7.58% 7.08%

CC1/2 ↑ 0.997 0.997

CCano ↑ 0.087 0.104

Rwork ↓ 0.206 0.199

Rfree ↓ 0.231 0.223

Map-model CC ↑ 0.81 0.8

↑: higher the better ↓: lower the better

First Level of Analysis Distortion: Indexing

• Number of hits: An image with at least 15

peaks is considered a hit

• Number indexed: Number of crystals

extracted from hits

• Rsplit: measure precision of averaged

intensities/amplitudes

• CCano: The correlation coefficient of the

Bijvoet differences of acentric reflections

• CC1/2: Pearson correlation coefficient.

• Rwork: measure of the agreement between

the crystallographic model and the

experimental X-ray diffraction data

• Rfree: Rwork computed on a small, random

sample of data

• Map-model CC: cross-correlation between

electron density map and model.

Chuck Yoon: Stanford

The data on the right is 196x smaller (or 631× if also using Non-Hit Rejection)

Final Level of Analysis Distortion: Protein
Reconstruction

Original

Reconstruction of Electron Densities Lysozyme
Very important role in our immune system: breaks up (digests) components of the cell walls of bacteria.

Chuck Yoon: Stanford

Lysozyme on a jungfrau4m detector

What’s Next
• Compressing Memory/ Communications

• Panda’s paper at IPDPS21: MVAPICH+ZFP. Collaboration with UTK on SZ for “mix precision”
computation. Difficult problem: how for formulate the impact of lossy compression error on
execution results?

• Feature Preservation
• Preservation of derivatives, Structures (Blobs, Halos, Critical points, etc.), Reduction of

artifacts, coupling with feature detections. Difficult problem: how to formulate/design error
control from quality requirement on features

• Automation of Compression Pipeline Construction
• Many possibilities of compression stages association (pre-processing, decorrelation,

quantization, encoding). Difficult problem: How to automatically identify the best pipeline
responding to user defined constraints in compression ratio, accuracy, speed

• Compressibility Bounds

Lossy Compressibility Bounds

Estimate “absolute” compression bounds à
compression ratio that no compressor can exceed given a user defined
quality constraints: e.g. local max absolute/relative error

Why does this matter:
• We cannot know if current compressors are really good or not

Important: Scientific datasets in general can be considered as:
Non-Gaussian (distribution), with Memory (correlations), non-Stationary,
non-Ergodic (do not visit all possible state) random processes

Objective à Roofline of lossy compressibility

Compression

ratio

User defined accuracy loss tolerance +-
• Should be specific to each dataset and user defined accuracy loss tolerance criteria
• Should be independent of existing compressors

• Lossy compressibility depends on user defined accuracy loss tolerance
• We want a compressibility estimation that capture correlations

May not be monotonic

SZ actual roof line

Hurricane/QCLOUDf

Lossy Compression Pipeline

Decorrelation CodingApproximation

Input
OutputLossless Lossy Lossless or lossy

E (error)

Quantifying optimal

decorrelation?

Shannon source

coding theory

(Entropy)

Typical design of a lossy compressor for scientific data

Shannon rate/distortion Theory:

Defines achievable coding limit for a
given source subject to distortion

Formulation of Compressibility Bound

KLT (Karhunen–Loève transform) is know to be optimal WRT for decorrelation efficiency (given a bit
budget in the compressed format, KTL minimizes the distortion)
But KLT is not optimal (transform) for scientific datasets
à Because the data distribution is not Gaussian
à Only for transform based compressors
à Data needs to be homoscedastic (same variance

everywhere on the field)
à Intrinsically needs a notion of blocks to

compute the covariance

SVD (and HoSVD: Tucker decomposition): TTRESH and Tucker-MPI
à Not recommended for Images (DCT performs better), but works well for Vis. ≥3D
à There is not yet proper consensus on a mathematical framework to select the core tensor elements

for optimal truncation
à Needs to identify an elimination strategy on coefficient to coefficient basis (truncation strategy)

Bound on Lossy Compressibility (Absolute: even if not practical)?

Both
produce
optimal

decorrelation
WRT

coding gain,
in Gaussian

case.
However,

assumptions
and data
overhead
limit their

applicability.

Many researches/results in information theory extending the Shannon rate/distortion theory.
à But assumptions do not correspond to Scientific data compression: e.g. Gaussian source with memory or Non-
gaussian memoryless, non-stationary Gaussian, etc.

Let’s look specifically at the decorrelation stage:

Lossy Compressibility Bounds
A less difficult problem:

Estimate compression/quality for several compressors. à
Compression bound WRT existing compressors

Why does this matter:
• Enable fast, automated configuration of a single compressor to have max quality that will fit in

available storage [7]. Cosmology simulations [8], climate simulations [9] and X-ray
crystallography [10]

• Enable quickly choosing between several compressors with highest CR at runtime in order to
minimize data size.

• Accurately pre-allocate memory when using compression to expand the amount of on-node
logical memory to run applications that utilize in-line compression [11] and quantum chemistry
simulations [12].

• Accurately foreseeing the data transfer time of I/O or on networks across different devices or
sites when compression is used to optimize resource utilization across network links when
streaming data [13].

Bound on Lossy Compressibility (compressor)?
Existing prediction models use knowledge of

compressor designs (white box).

à Not accurate enough (prediction err can be >100%)

• Formulation of a generic (compressor free)
statistical prediction model.

• Use training from observed compression ratios
(black box) for its specialization to a compressor.

2 steps:

Step 1: Use Statistical predictors on dataset:

a) SVD to exploit spatial correlation, b) standard

deviation to account for variability, c) quantized

entropy to represent lossyness and codding

Step 2: Train compression models from regressions

(linear and spline-based) to fit predictors to actual

observations

Can be applied and specialized to any lossy compressor

before compression

Tested on

4 different

Compressors:

(out-of-sample
prediction)

-SZ (prediction)

-ZFP (Transform)

-MGARD (Multi-grid)

-Bit Grooming

(truncation and

bit operations)

Linear model:

*Uses log because values may appear from dividing by the standard deviation

*

Conclusion

Lossy Compression for scientific data:
• A very active research topic
• Many teams working on the topic
• Excellent progress in the past 5-6 years
• Significant interest/adoption by apps
• Still many interesting open questions

Thanks
This research was supported by the
Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department
of Energy’s Office of Science and National
Nuclear Security Administration,
responsible for delivering a capable
exascale ecosystem, including software,
applications, and hardware technology,
to support the nation’s exascale computing
imperative.

