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Lossy compression of scientific data
• Consist in reducing scientific data volume by leveraging correlations and reducing 

precision (lossless compression does not reduce scientific data enough)

• Compression ratios (with current compressors) vary depending on use-cases, typically:
• CR=5 for hard to compress dataset and demanding data/analysis quality preservation
• CR=10-100 for scientific data presenting high correlation and medium data/analysis quality 

preservation
• CR=x100 for visualization (low data/analysis quality preservation)

• Goal: keep the same science (satisfy user’s quality requirements WRT QoIs – features)
• WARNING: You will see images because this is the easiest way to show distortion 

but compression of scientific data is NOT for images 

• Getting significant traction in the scientific community (climate, cosmology, seismic, 
etc.), IoT community as well (sensors, EKG)



Progress in Compression Techniques



Huge Progress in performance in the past 5-6 years
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Visualization of Miranda - density data for SZ’s different versions (EB: VRAE 1E-2), Performance on single core CPU (Intel Broadwell)

Evolution of SZ compression quality and performance using a large-eddy simulation of multicomponent flows 
with turbulent mixing: Miranda - density field.

SZx compresses at 300GB/s on NVIDIA A100 à Bottleneck is not compression but PCIe

75MB/s 80MB/s 95MB/s

140MB/s 200MB/s 200MB/s 110MB/s 100MB/s



More Lossy Compressors
ZFP (LLNL): Transform (DCT)

ECP ZFP

Overpreserves data, lower

Compression ratio compared

to SZ, Better speed.

SPERR (NCAR): Wavelet

Works well on wave 

propagation problem 

(Climate, Seismic)

MGARD (ORNL)

ECP CODAR

Multigrid adaptive 

reduction

MGARD controls the 

compression errors in 

quantities of interest (!):

Linear expression of the error

Compressor Pearson R^2 Spatial Error KS-test

SZ_Interp 93 93 21

SZ (regression) 14.34 14.34 14.34

ZFP 5.45 5.45 2.36

MGARD 27.1 4.69 X

MGARDx 14.7 6.49 X

TThresh 16.1 16.1 2.98

BitGrooming 1.51 1.51 1.51

Digit Rounding 1.86 1.86 1.86

FPZip 1.95 1.95 1.95

NDZip 1.64 1.64 1.64

Zstd 1.35 1.35 1.35

Largest Compression Ratio For Each Compressor that 
Satisfies Each Pinard et al (2020) Requirements



More Lossy Compressors

Autoencoders

12 residual blocks
for feature extraction
+ 3 compression layers

Significant

Smoothing

Overall architecture of 
convolutional autoencoder 
(A. Glaws, R. King, and M. 
Sprague, “Deep learning for 
in situ data compression of 
large turbulent flow 
simulations,” Physical Review 
Fluids, vol. 5, no. 11, p. 
114602, 2020.)

TTRESH (LLNL):

HoSVD (Tucker Decomposition)

Quantize the Core tensor

Very high compression ratio

Tendency to blur the overall data

(loose details)

1 or 2 orders of magnitude slower

than SZ or ZFP

Compressor Pearson R^2 Spatial Error KS-test

SZ_Interp 93 93 21

SZ (regression) 14.34 14.34 14.34

ZFP 5.45 5.45 2.36

MGARD 27.1 4.69 X

MGARDx 14.7 6.49 X

TThresh 16.1 16.1 2.98

BitGrooming 1.51 1.51 1.51

Digit Rounding 1.86 1.86 1.86

FPZip 1.95 1.95 1.95

NDZip 1.64 1.64 1.64

Zstd 1.35 1.35 1.35

Largest Compression Ratio For Each Compressor that 
Satisfies Each Pinard et al (2020) Requirements



Feature detection 
Wavelet Transform

Resolution coarsening
Linear regression predictor

Lorenzo Predictor
Spline interpolation predictor

Pattern based predictor
Auto-encoder predictor

Linear quantization
Log transform

Huffman coding
Arithmetic coding
Leading bit coding

Truncation 
Zstd
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Data Analysis

User requirements

SZx

SZ-Interp

SZ 2.1 (default)

SZ-Pattern

Lossy compressor
composition

Lossy compressor
parameters

SZ-separatorSZ 3 (C++) library of algorithms 
for lossy compression and examples 
of SZ compressors built from the 
library of algorithms. 

To compose and tune a compression 
pipeline we analyze the data to 
compress and user requirements in 
compression speed, ratio and 
accuracy.

What makes SZ3 different: a Highly Modular/ 
Customizable Compression Framework

LCLS



Progress in Applications and
Methodology



Many more Applications (than in 2018)
• Climate
• Combustion
• Cosmology
• Deep Learning

• Activation data
• Model coefficients
• Training data

• Extreme Weather
• Fusion Energy
• Hydrodynamics
• IoT
• Light Sources (Physics 

Instruments)
• Materials Science
• Molecular Dynamics
• Quantum Chemistry
• Quantum Circuit Simulation
• Seismic Imaging



Many more Use-cases (than in 2018)
We are seeing an increasing diversity/number of use-cases

“Classic” use-cases:
1) Visualization

2) Reducing storage footprint (offline compression)

3) Reducing I/O time (on-line, in-situ compression)

Recently identified use-cases:
4) Reducing streaming intensity (recent for generic floating-point compressors)

5) Lossy checkpoint/restart from lossy state 

• reduce checkpoints footprint on storage – adjoint, accelerate checkpointing

6) Re-computation Avoiding by reducing the memory footprint à GAMESS

7) Running larger simulations by reducing the memory footprint
8) Accelerating CPU/GPU – memory transfer

9) Reduce DNN model size

10) Accelerate training (I/O read time) of DNNs
Cappello, F., Di, S., Li, S., Liang, X., Gok, A. M., Tao, et Al., Use cases 
of lossy compression for floating-point data in scientific data sets. The 
International Journal of High Performance Computing 
Applications, 33(6), 1201–1220, 2019



Huge Progress in Methodologies
https://sdrbench.github.io/ https://github.com/robertu94/libpressio

https://github.com/CODARcode/Z-checker



Putting all Together
example: LCLS/Crystallography



Context: LCLS II. Goal: Definition of reduction method
Detector produces:
• 2D images @ 250GB/s
• 4M pixel/event unsigned integers, in binary XTC2 format

Compression objectives: CR of 10 or more with error bound @ 500 MB/s/core
à RoiBinSZ algorithm (regions of interest extraction + background 
binning + SZ background compression)

Example of Success Story: Crystallography
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Data from detector

Peak finder

Mask regions of interest

Extract background

Low pass filter (binning e.g. 2x2)

Rebuild image

Compress background (SZ 2.1) 

Indexing

Merge

Phase

Refine

Image

With Chuck Yoon: Stanford

1: X-ray Beam 2: Diffraction 3: Reduction



Roibin SZ on Se-SAD SFX Dataset (Selenium)  
selenobiotinyl-streptavidin on a cspad detector

Original Riobin SZ

Total compression ratio 1 70.65

Number of hits 744,150 744,150

Number indexed 255,065 255,918

Rsplit ↓ 7.58% 7.08%

CC1/2 ↑ 0.997 0.997

CCano ↑ 0.087 0.104

Rwork ↓ 0.206 0.199

Rfree ↓ 0.231 0.223

Map-model CC ↑ 0.81 0.8

↑: higher the better          ↓: lower the better

First Level of Analysis Distortion: Indexing 

• Number of hits: An image with at least 15 

peaks is considered a hit

• Number indexed: Number of crystals 

extracted from hits

• Rsplit: measure precision of averaged 

intensities/amplitudes

• CCano: The correlation coefficient of the 

Bijvoet differences of acentric reflections

• CC1/2: Pearson correlation coefficient.

• Rwork: measure of the agreement between 

the crystallographic model and the 

experimental X-ray diffraction data

• Rfree: Rwork computed on a small, random 

sample of data

• Map-model CC: cross-correlation between 

electron density map and model.

Chuck Yoon: Stanford



The data on the right is 196x smaller (or 631× if also using Non-Hit Rejection)

Final Level of Analysis Distortion: Protein 
Reconstruction

Original

Reconstruction of Electron Densities Lysozyme
Very important role in our immune system: breaks up (digests) components of the cell walls of bacteria.

Chuck Yoon: Stanford

Lysozyme on a jungfrau4m detector



What’s Next
• Compressing Memory/ Communications

• Panda’s paper at IPDPS21: MVAPICH+ZFP. Collaboration with UTK on SZ for “mix precision” 
computation. Difficult problem: how for formulate the impact of lossy compression error on 
execution results?

• Feature Preservation
• Preservation of derivatives, Structures (Blobs, Halos, Critical points, etc.), Reduction of 

artifacts, coupling with feature detections. Difficult problem: how to formulate/design error 
control from quality requirement on features

• Automation of Compression Pipeline Construction
• Many possibilities of compression stages association (pre-processing, decorrelation, 

quantization, encoding). Difficult problem: How to automatically identify the best pipeline 
responding to user defined constraints in compression ratio, accuracy, speed 

• Compressibility Bounds



Lossy Compressibility Bounds

Estimate “absolute” compression bounds à
compression ratio that no compressor can exceed given a user defined 
quality constraints: e.g. local max absolute/relative error

Why does this matter: 
• We cannot know if current compressors are really good or not

Important: Scientific datasets in general can be considered as:
Non-Gaussian (distribution), with Memory (correlations), non-Stationary, 
non-Ergodic (do not visit all possible state) random processes



Objective à Roofline of lossy compressibility

Compression

ratio

User defined accuracy loss tolerance +-
• Should be specific to each dataset and user defined accuracy loss tolerance criteria
• Should be independent of existing compressors

• Lossy compressibility depends on user defined accuracy loss tolerance
• We want a compressibility estimation that capture correlations

May not be monotonic 

SZ actual roof line

Hurricane/QCLOUDf



Lossy Compression Pipeline

Decorrelation CodingApproximation

Input
OutputLossless Lossy Lossless or lossy

E (error)

Quantifying optimal

decorrelation? 

Shannon source 

coding theory

(Entropy)

Typical design of a lossy compressor for scientific data

Shannon rate/distortion Theory:

Defines achievable coding limit for a 
given source subject to distortion

Formulation of Compressibility Bound



KLT (Karhunen–Loève transform) is know to be optimal WRT for decorrelation efficiency (given a bit 
budget in the compressed format, KTL minimizes the distortion) 
But KLT is not optimal (transform) for scientific datasets
à Because the data distribution is not Gaussian
à Only for transform based compressors
à Data needs to be homoscedastic (same variance 

everywhere on the field)
à Intrinsically needs a notion of blocks to 

compute the covariance 

SVD (and HoSVD: Tucker decomposition): TTRESH and Tucker-MPI
à Not recommended for Images (DCT performs better), but works well for Vis. ≥3D 
à There is not yet proper consensus on a mathematical framework to select the core tensor elements 

for optimal truncation
à Needs to identify an elimination strategy on coefficient to coefficient basis (truncation strategy)

Bound on Lossy Compressibility (Absolute: even if not practical)?

Both 
produce
optimal

decorrelation
WRT

coding gain,
in Gaussian 

case.
However,

assumptions
and data
overhead
limit their

applicability.

Many researches/results in information theory extending the Shannon rate/distortion theory. 
à But assumptions do not correspond to Scientific data compression: e.g. Gaussian source with memory or Non-
gaussian memoryless, non-stationary Gaussian, etc.

Let’s look specifically at the decorrelation stage:



Lossy Compressibility Bounds
A less difficult problem:

Estimate compression/quality for several compressors. à
Compression bound WRT existing compressors

Why does this matter: 
• Enable fast, automated configuration of a single compressor to have max quality that will fit in 

available storage [7]. Cosmology simulations [8], climate simulations [9] and X-ray 
crystallography [10] 

• Enable quickly choosing between several compressors with highest CR at runtime in order to 
minimize data size. 

• Accurately pre-allocate memory when using compression to expand the amount of on-node 
logical memory to run applications that utilize in-line compression [11] and quantum chemistry 
simulations [12]. 

• Accurately foreseeing the data transfer time of I/O or on networks across different devices or 
sites when compression is used to optimize resource utilization across network links when 
streaming data [13].



Bound on Lossy Compressibility (compressor)?
Existing prediction models use knowledge of 

compressor designs (white box).

à Not accurate enough (prediction err can be >100%)

• Formulation of a generic (compressor free) 
statistical prediction model. 

• Use training from observed compression ratios 
(black box) for its specialization to a compressor. 

2 steps: 

Step 1: Use Statistical predictors on dataset: 

a) SVD to exploit spatial correlation, b) standard 

deviation to account for variability, c) quantized 

entropy to represent lossyness and codding 

Step 2: Train compression models from regressions

(linear and spline-based) to fit predictors to actual 

observations

Can be applied and specialized to any lossy compressor 

before compression

Tested on

4 different 

Compressors:

(out-of-sample 
prediction)

-SZ (prediction)

-ZFP (Transform)

-MGARD (Multi-grid)

-Bit Grooming

(truncation and

bit operations)

Linear model:

*Uses log because values may appear from dividing by the standard deviation

*



Conclusion

Lossy Compression for scientific data:
• A very active research topic
• Many teams working on the topic
• Excellent progress in the past 5-6 years
• Significant interest/adoption by apps
• Still many interesting open questions
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