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Progress

CCDSC 2016
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Scientific Data Compression:

From Stone-Age to

CCDSC 2018

EXASCALE COMPUTING PROJECT]

Three Frontiers of Lossy Compression of
Scientific Data
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* Open questions

Past (still used today)

-Lossless compression

-Decimation in space and time + linear or
tricubic (or other) interpolation

-Lossy compression mainly for Visualization

This is what we need
to compress
(bit map of 128 floating
point numbers):

Technologies that are at the current
frontiers: SZ, ZFP, Z-checker+SDRBench

three frontiers based on our explorations and
results in the ECP EZ, CODAR and Exasky
Projects and ANL SZ compressor

In this talk, | will illustrate the progresses in these
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Lossy compression of scientific data

Consist in reducing scientific data volume by leveraging correlations and reducing

precision (lossless compression does not reduce scientific data enough)

Compression ratios (with current compressors) vary depending on use-cases, typically:

* CR=5 for hard to compress dataset and demanding data/analysis quality preservation

» CR=10-100 for scientific data presenting high correlation and medium data/analysis quality

preservation
* CR=x100 for visualization (low data/analysis quality preservation)

Goal: keep the same science (satisfy user’s quality requirements WRT Qols — features)
 WARNING: You will see images because this is the easiest way to show distortion

but compression of scientific data is NOT for images

Getting significant traction in the scientific community (climate, cosmology, seismic,

etc.), loT community as well (sensors, EKG)
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Progress in Compression Technigues
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Huge Progress in performance in the past 5-6 yearE\@\\P
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Evolution of SZ compression quality and performance using a large-eddy simulation of multicomponent flows
with turbulent mixing: Miranda - density field.
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Visualization of Miranda - density data for SZ’s different versions (EB: VRAE 1E-2), Performance on single core CPU (Intel Broadwell)

SZx compresses at 300GB/s on NVIDIA A100 - Bottleneck is not compression but PCle



More Lossy Compressors

Largest Compression Ratio For Each Compressor that
Satisfies Each Pinard et al (2020) Requirements

ZFP (LLNL): Transform (DCT)
ECP ZFP

Overpreserves data, lower
Compression ratio compared
to SZ, Better speed.

SPERR (NCAR): Wavelet
Works well on wave
propagation problem
(Climate, Seismic)

MGARD (ORNL)

ECP CODAR

Multigrid adaptive

reduction

MGARD controls the
compression errors in
guantities of interest (Q):
Linear expression of the error

Compressor
SZ Interp
SZ (regression)
ZFP
MGARD
MGARDx
TThresh
BitGrooming
Digit Rounding
FPZip
NDZip

Zstd

Pearson R”"2

93

14.34

5.45

271

14.7

16.1

1.51

1.86

1.95

1.64

1.35

Spatial Error
93
14.34
5.45
4.69
6.49
16.1
1.51
1.86
1.95
1.64

1.35

KS-test
21
14.34
2.36
X
X
2.98
1.51
1.86
1.95

1.64 ,
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More Lossy Compressors

Largest Compression Ratio For Each Compressor that
Satisfies Each Pinard et al (2020) Requirements

TTRESH (LLNL):

HoSVD (Tucker Decomposition)
Quantize the Core tensor

Very high compression ratio
Tendency to blur the overall data
(loose details)

1 or 2 orders of magnitude slower
than SZ or ZFP

Autoencoders

Overall architecture of
convolutional autoencoder
(A. Glaws, R. King, and M.
Sprague, “Deep learning for
in situ data compression of
large turbulent flow
simulations,” Physical Review
Fluids, vol. 5, no. 11, p.
114602, 2020.)

12 residual blocks
for feature extraction
+ 3 compression layers

Compressor
SZ Interp
SZ (regression)
ZFP
MGARD
MGARDx
TThresh
BitGrooming
Digit Rounding
FPZip
NDZip

Zstd

Pearson R”"2

93

14.34

5.45

271

14.7

16.1

1.51

1.86

1.95

1.64

1.35

Spatial Error
93
14.34
5.45
4.69
6.49
16.1
1.51
1.86
1.95
1.64

1.35

KS-test
21
14.34
2.36
X
X
2.98

1.51
Significant

1.86 Smoothing
1.95

1.64

A
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What makes SZ3 different: a Highly Modular/
Customizable Compression Framework

SZ 3 (C++) library of algorithms

for lossy compression and examples
of SZ compressors built from the
library of algorithms.

To compose and tune a compression
pipeline we analyze the data to
compress and user requirements in
compression speed, ratio and
accuracy.

SZ Library of compression algorithms

User requirements

—

Data Analysis

=

Feature detectione.
Wavelet Transforme
Resolution coarseninge
Linear regression predictore-
Lorenzo Predictor
Spline interpolation predictore,
Pattern based predictore-
Auto-encoder predictore-
Linear quantizatione
Log transforme

Huffman coding
Arithmetic codinge’
Leading bit codinge-

Lossy compressor

arameters

Lossy compressor

composition

Truncation
Zstd

EEEEEEEEEEEEEEEEEEEEEEEE

LCLS
SZ-separator

SZ 2.1 (default)

SZ-Pattern

SZ-Interp

SZx
Argon ne°
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Progress in Applications and
Methodology
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Many more Applications (than in 2018)

Climate
Combustion
Cosmology

Deep Learning
* Activation data
* Model coefficients
* Training data

Extreme Weather
Fusion Energy
Hydrodynamics
loT

Light Sources (Physics
Instruments)

Materials Science
Molecular Dynamics
Quantum Chemistry
Quantum Circuit Simulation
Seismic Imaging

EEEEEEEEEEEEEEEEEEEEEEEE
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Many more Use-cases (than in 2018) ECP

EXASCALE COMPUTING PROJECT

We are seeing an increasing diversity/number of use-cases

“Classic” use-cases:
1) Visualization
2) Reducing storage footprint (offline compression)

3) Reducing I/0 time (on-line, in-situ compression)

Recently identified use-cases:
4) Reducing streaming intensity (recent for generic floating-point compressors)
5) Lossy checkpoint/restart from lossy state
* reduce checkpoints footprint on storage — adjoint, accelerate checkpointing
6) Re-computation Avoiding by reducing the memory footprint > GAMESS
7) Running larger simulations by reducing the memory footprint
8) Accelerating CPU/GPU — memory transfer
9) Reduce DNN model size

10) Accelerate trammg (|/O read tlme) of DNNs of lossy compression for floating-point data in scientific data sets. The
International Journal of High Performance Compqﬁwgon ne
Applications, 33(6), 1201-1220, 2019 NATIONAL LABORATORY

Cappello, F., Di, S., Li, S., Liang, X., Gok, A. M., Tao, et Al., Use caa
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Huge Progress in Methodologies ;|\ =&

CODAR

https://sdrbench.github.io/ https://github.com/robertu94/libpressio el D P

sdrbench.githubio @@ ¢ () + 88

eeoe M- < A ® 0 6

G @ @ nttps://sdrbench.github.io

cL Z-Checker| HDF5Filt ADIOS AutoSFX
Scientific Data Reduction Benchmarks

e https://github.com/CODARcode/Z-checker

“This site provides reference scientifc datasets, data reduction techniques, error metrics, error controls and error assessment tools for users and developers of scientiic data reduction
hniques.

Important: from one or. , please:
o Gl SomBone pe!satanch g o
«  Please also cite: K. Zhao, S. Di, X. L 0, J. Bessac, Z. Chen, and F. Cappello, “SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors”,

D. Tac
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ECP

e sou ject, and he £GP CODAR project.
ek e contion of pusicators e Antscetsoutost rbqvee por aveck)
Gontct Julia Rust Python
ension: the omef of the dimensions shown in the "Format' column of the table \s In row-major order (aka. C arder) wmch \l cans\slem with weH known 1/O libraries such as
HDF5 Fm ‘example, for the CESM-ATM dataset (1800 x 3600), 1800 is higher dimension wer di ter). For mostcompressors @ &% B R BRI R — -
(such as SZ, ZFP and FPZIP), the dimensions should be given in the reverse order (such as -2 3600 1800) for lhelr ewecmames If you are not sure aboul ‘the order of dimension, ‘< Ay
one simple method i rying diferent dimension orders and selecing the results wth highest compression ratos. 1 1
Seiaresis: ; Z-checker i
Clients Bindings i | T
Name e Format Size (@ata) Command Examples T / H | i
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e o Z5E o s 2 - | -server Output Engine || . || -
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= = zeroed all | 3600 1801 1EZ-s
i | Ubresie press pressio o compre: metrics jata options | © | o @ <
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1
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Alamos National Laboratory and D 3200 24GB |xcf32.zfp.out-1 2869440 -a 1E-2 -5 Property ca-npmsors |
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Putting all Together
example: LCLS/Crystallography
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ECP

Example of Success Story: Crystallography  cus somdesar=-—

With Chuck Yoon: Stanford

Offline

1: X-ray Beam 2: Diffraction LCLS-!l Data Systom 3: Reduction
Detector — e————————cspemaen (pe?:l?lch) 3 Da(‘sahnafe:{ c:";:;:,r;:’sﬂme | (shared-1for NEH) (shared by all)
Liquid Jet = 1 § |
' -
o KB Mirrors
Primary .;\J,\
Interaction \
Point Undulator

(420 m upstream)

.
ol

1 MHz acquisi!ion: 3
250 GB/s ' Data written in HDF5 format |

Diffraction before destruction
Number of pulses/sec: 120
Millions of diffraction patterns from crystals

Context: LCLS II. Goal: Definition of reduction method
Detector produces:

+ 2D images @ 250GB/s

* 4M pixel/event unsigned integers, in binary XTC2 format

Compression objectives: CR of 10 or more with error bound @ 500 MB/s/core
- RoiBinSZ algorithm (regions of interest extraction + background
binning + SZ background compression)

RoiBinSZ compression pipeline

"

Peak finder

'

Mask regions of interest

'

Extract background

'

Low pass filter (binning e.g. 2x2)

'

Compress background (SZ 2.1)

'

Rebuild image

.

Indexing

'

Merge

'

Phase

'

Refine

'

7 \i A4 I LI A )
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First Level of Analysis Distortion: Indexing ECP

EXASCALE COMPUTING PROJECT

Roibin SZ on Se-SAD SFX Dataset (Selenium)

selenobiotinyl-streptavidin on a cspad detector Chuck Yoon: Stanford
Original Riobin SZ

Total compressionratio |1 70.65
Number of hits 744,150 744,150
Number indexed 255,065 255,918

Number of hits: An image with at least 15 .

peaks is considered a hit Rsplit | 7.58% 7.08%

Number indexed: Number of crystals

extracted from hits CCl/Z /P 0.997 0.997

Rsplit: measure precision of averaged ) ’

intensities/amplitudes

CCano: The correlation coefficient of the CCano 1 0.087 0.104

Bijvoet differences of acentric reflections

CC1/2: Pearson correlation coefficient. RWOTk \1’ 0.206 0.199

Rwork: measure of the agreement between ) :

the crystallographic model and the

experimental X-ray diffraction data Rfree \1/ 0.231 0.223

Rfree: Rwork computed on a small, random

sample of data Map-model CC 0.81 0.8

Map-model CC: cross-correlation between

electron density map and model. ’ s
1 : higher the better J : lower the better Argonne

NATIONAL LABORATORY



Final Level of Analysis Distortion: Protein
Reconstruction

Lysozyme on a jungfraud4m detector

Reconstruction of Electron Densities Lysozyme

(a) original (b) roibin-sz é
The data on the right is 196x smaller (or 631x if also using Non-Hit Rejection) BONTIE or



What’s Next

Compressing Memory/ Communications
Panda’s paper at IPDPS21: MVAPICH+ZFP. Collaboration with UTK on SZ for “mix precision”
computation. Difficult problem: how for formulate the impact of lossy compression error on
execution results?

Feature Preservation

Preservation of derivatives, Structures (Blobs, Halos, Critical points, etc.), Reduction of
artifacts, coupling with feature detections. Difficult problem: how to formulate/design error
control from quality requirement on features

Automation of Compression Pipeline Construction
Many possibilities of compression stages association (pre-processing, decorrelation,
qguantization, encoding). Difficult problem: How to automatically identify the best pipeline
responding to user defined constraints in compression ratio, accuracy, speed

Compressibility Bounds _
Argonneé
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Lossy Compressibility Bounds

Estimate “absolute” compression bounds =2
compression ratio that no compressor can exceed given a user defined
quality constraints: e.g. local max absolute/relative error

Why does this matter:
 We cannot know if current compressors are really good or not

Important: Scientific datasets in general can be considered as:
Non-Gaussian (distribution), with Memory (correlations), non-Stationary,
non-Ergodic (do not visit all possible state) random processes

AAAAAAAAAAAAAAAAAA



Objective =2 Roofline of lossy compressibility ===

* Lossy compressibility depends on user defined accuracy loss tolerance
* We want a compressibility estimation that capture correlations

Compression SZ actual roof line
P Hurricane/QCLOUDf

ratio

= A
N
o

May not be monotonic ‘

o

118
o, 0,0, 0, 0,0
ERTRININSN S

Compression Ratio

000000000000
K2 O R O NER RS ONEE GRS O MR M) N

Error Bounds

- < User defined accuracy loss tolerance +

* Should be specific to each dataset and user defined accuracy loss tolerance criteria
* Should be independent of existing compressors Argonneﬁ

NATIONAL LABORATORY



Lossy Compression Pipeline

Typical design of a lossy compressor for scientific data

Output

Input Lossless Lossy Lossless or lossy
|::> Decorrelation A Approximation )l Coding
E (error)
Quantifying optimal Shannon rate/distortion Theory: Shannon source
decorrelation? Defines achievable coding limit for a coding theory
given source subject to distortion (Entropy)
\
|

Formulation of Compressibility Bound

Argon ne°
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Bound on Lossy Compressibility (Absolute: even if not practical)?

Many researches/results in information theory extending the Shannon rate/distortion theory.
—> But assumptions do not correspond to Scientific data compression: e.g. Gaussian source with memory or Non-

gaussian memoryless, non-stationary Gaussian, etc.

Let’s look specifically at the decorrelation stage:

Both
produce
optimal

decorrelation

WRT

coding gain,
in Gaussian

Case. wm
However,

assumptions
and data
overhead
limit their

applicability.

=

KLT (Karhunen—Loéve transform) is know to be optimal WRT for decorrelation efficiency (given a bit
budget in the compressed format, KTL minimizes the distortion)

But KLT is not optimal (transform) for scientific datasets

—> Because the data distribution is not Gaussian e ———

= Only for transform based compressors

— Data needs to be homoscedastic (same variance
everywhere on the field)

- Intrinsically needs a notion of blocks to
compute the covariance

QMCpack orbital - SDRBench

|

®
S

|

©
o

< ]

o

N

] |
> [— |||IIIII||||II||||

Miranda Density field - SORBench
‘I. o |
° (=]
099 117 135 153 171 189 207 225 243 261 279 287

DDDDDDD

Frequency

0.125 0.725 1.325 1.925 2525

SVD (and HoSVD: Tucker decomposition): TTRESH and Tucker-MPI o
- Not recommended for Images (DCT performs better), but works well for Vis. 23D
- There is not yet proper consensus on a mathematical framework to select the core tensor elements

for optimal truncation

- Needs to identify an elimination strategy on coefficient to coefficient basis (truncation }rgager%y])e

NATIONAL LABORATORY




Lossy Compressibility Bounds

A less difficult problem:

Estimate compression/quality for several compressors. 2
Compression bound WRT existing compressors

Why does this matter:

Enable fast, automated configuration of a single compressor to have max quality that will fit in
available storage [7]. Cosmology simulations [8], climate simulations [9] and X-ray
crystallography [10]

Enable quickly choosing between several compressors with highest CR at runtime in order to
minimize data size.

Accurately pre-allocate memory when using compression to expand the amount of on-node
logical memory to run applications that utilize in-line compression [11] and quantum chemistry
simulations [12].

Accurately foreseeing the data transfer time of I/O or on networks across different devices or
sites when compression is used to optimize resource utilization across network links when
streaming data [13].

Argonne®
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Bound on Lossy Compressibility (compressor)ﬁap

Existing prediction models use knowledge of
compressor designs (white box).
- Not accurate enough (prediction err can be >100%)

* Formulation of a generic (compressor free)
statistical prediction model.

* Use training from observed compression ratios
(black box) for its specialization to a compressor.

2 steps:

Step 1: Use Statistical predictors on dataset:

a) SVD to exploit spatial correlation, b) standard
deviation to account for variability, ¢) quantized
entropy to represent lossyness and codding

Step 2: Train compression models from regressions
(linear and spline-based) to fit predictors to actual
observations

Can be applied and specialized to any lossy compressor
before compression

*Uses log because values may appear from dividing by the standard deviation 5 10 15

Linear model:

EXASCALE COMPUTING PROJECT

IOE(CR) = a+ b xlog(g-ent) + c X log (m)

(1)

SVD-t
+d x log(g-ent) x log (&)

o

where € is a Gaussian random variable with mean 0 and
standard deviation o.,s. Coefficients a, b, ¢, d and o.,s are
estimated by least-square estimation with the R-function Im.

Miranda Vx - ZFP abs 1e-05

Miranda Vx - SZ2 abs 1e-05

Tested on

4 different
Compressors:
(out-of-sample
prediction)

Predicted CR
le 5‘5 §1P121ft161l8

Predicted CR
10 20 30 40 50 60

8 10 12 14 16 18
Observed CR

10 20 30 40 50 60 i 6
Observed CR

-SZ (prediction)

-ZFP (Transform)
-MGARD (Multi-grid,
-Bit Grooming
(truncation and

bit operations)

Miranda Vx - MGARD abs 1e-05 Miranda Vx - Bit Grooming abs 1e-05

Predicted CR
2]5 216 217 2.8 24‘9 310 311

Predicted CR
10

v

25 26 27 28 29 30 31 ey
Observed CR

N

Observed CR



Conclusion

Lossy Compression for scientific data:

* Avery active research topic

 Many teams working on the topic

* Excellent progress in the past 5-6 years
» Significant interest/adoption by apps

e Still many interesting open questions
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