

HPC challenges for new extreme scale applications, March 07, 2023

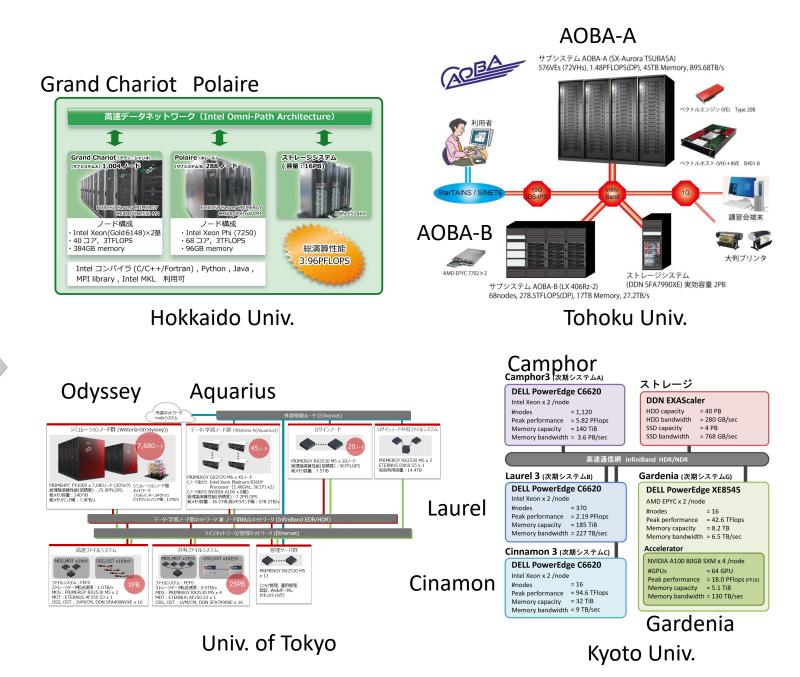
Development of a Heterogeneous Coupling Library h3-Open-UTIL/MP

Takashi Arakawa^{1,2} Shinji Sumimoto² Hisashi Yashiro³ Kengo Nakajima² 1:CliMTech Inc. 2:Information Technology Center, the University of Tokyo 3:National Institute for Environmental Studies

Content

Introduction

- About h3-Open-UTIL/MP
 - Structure
 - How to realize heterogeneous coupling
- Performance Evaluation I
 - By Toy Models
- Case Study
 - Atmospheric model and Machine Learning library coupling
- Performance Evaluation II
 - By Real Applications



Introduction

Key word of recent HPC trend

Heterogeneity

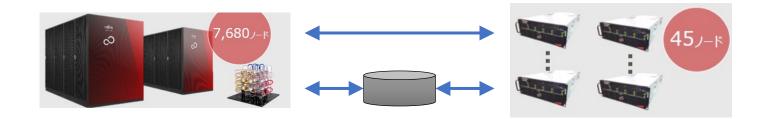
Many HPCs in Japanese universities have heterogeneous architecture

System Architecture

- Horseckeel, Bibrie, Anterspeckeese h3-Open-BDEC Die bate & Extreme Computing
- The computer systems that comprise HPCI (High Performance Computing Infrastructure) of Japan.
- Except for Fugaku and TSUBAME, all other HPCs have multiple different architecture node group.

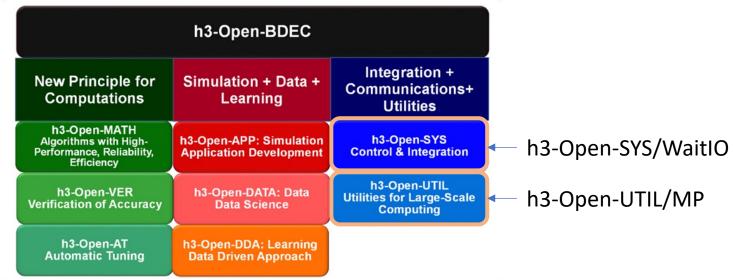
HPCI High Performance Computing Infrastructure

Organization	System Name	Architecture	Node Configuration
Hokkaido Univ.	Grand Chariot + Polaire	Xeon Gold + Xeon Phi	CPU + CPU
Tohoku Univ.	AOBA-A + AOBA-B	SX-Aurora Tsubasa + AMD EPYC	VE + CPU
Tsukuba Univ.	Cygnus (Deneb + Albireo)	Xeon/NVIDIA Tesla (/Nallatech 520N)	GPU + FPGA
AIST	ABCI (Node A + Node V)	Xeon Platinum/NVIDIA A100 + Xeon Gold/ NVIDIA Tesla V100	GPU + GPU
Univ. of Tokyo	Wisteria/BDEC-01 (Odyssey + Aquarius)	A64FX + Xeon Platinum/NVIDIA A100	CPU + GPU
Tokyo Tech.	TSUBAME	Xeon E5/NVIDIA Tesla P100	GPU
JAMSTEC	Earth Simulator 4	SX-Aurora Tsubasa + AMD EPYC + AMD EPYC/NVIDIA A100	VE + CPU + GPU
Nagoya Univ.	Flow [不老] (Type I + Type II + Type III)	A64FX + Xeon Gold/NVIDIA Tesla V100 + Xeon Platinum/NVIDIA Quadro	CPU + GPU + GPU
Kyoto Univ.	Camphor3 + Laurel3 + Cinnamon3 + Gardenia	Xeon + Xeon + Xeon + AMD EPYC/NVIDIA A100	CPU x3 + GPU
Osaka Univ.	SQUID	Xeon Platinum + Xeon Platinum/NGIDIA A100 + SX-Aurora Tsubasa	CPU + GPU + VE
Riken/RCCS	Fugaku[富岳]	A64FX	CPU
Kyusyu Univ.	ITO [いと](Subsystem A + Subsystem B)	Xeon Gold + Xeon Gold/NVIDIA Tesla	CPU + GPU



Heterogeneous System and Software

- The reason for the development of heterogeneous system
 - The role of HPC has expanded beyond not only simulation but also to large-scale data analysis and machine learning.
- Typical use case of Heterogeneous System
 - File sharing→One way and Sequential→Time and resource consuming


- Coupling Software which supports real time data exchange between different systems (via inter-connect or storage system)
 - Two-way Concurrent processing become possible
 - Interactive processing is essential for reproduce more realistic world in the computer system.

h3-Open-UTIL/MP

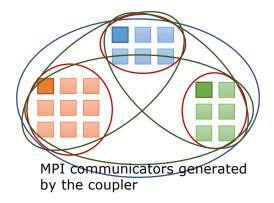
- h3-Open-UTIL/MP
 - Coupling library which supports internode data exchange and application coupling by collaborating with h3-Open-SYS/WaitIO in the h3-Open-BDEC project.
- h3-Open-BDEC project
 - h3: Hierarchical, Hybrid, and Heterogeneous
 - BDEC:Big Data & Extreme Computing
- h3-Open-BDEC software suite
 - 8 packages
 - UTIL/MP \rightarrow h3-Open-UTIL, WatiIO \rightarrow h3-Open-SYS

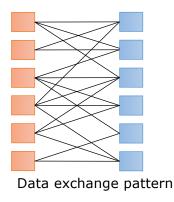
Structure of h3-Open-BDEC project/software suite https://h3-open-bdec.cc.u-tokyo.ac.jp/index.html

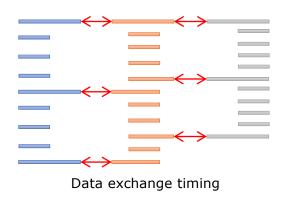
h3-Open-SYS/WaitIO Simulation Node Odyssey Fujitsu/Arm A64FX Communication Library for Heterogeneous System 25.9PF, 7.8PB/s Via Interconnect : WaitIO-Socket **Shared File** Fast File 2.0TB/s Via File : WaitIO-File System System 25.8PB, 500GB/s 1PB, 1.0TB/s Data/Learning Node Aquarius Intel Ice Lake + NVIDIA A100 7.20PF, 578.2TB/s **API** Overview API Description Basic data exchange API: waitio_isend, waitio isend **Non-Blocking Send** waitio irecv, waitio wait same as MPI waitio irecv **Non-Blocking Receive** easy to incorporate WaitIO into UTIL/MP waitio wait Send/Recv Wait Completion waitio init WaitIO Initialization waitio_get_nporcs Get # of PB member Create a PB group by function waitio create group Create a PB group by member list waitio create group wranks waitio group rank Get my group rank Get my group size waitio_group_size

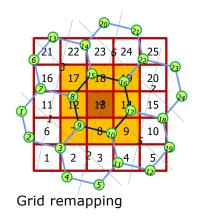
waitio pb size

waitio_pb_rank

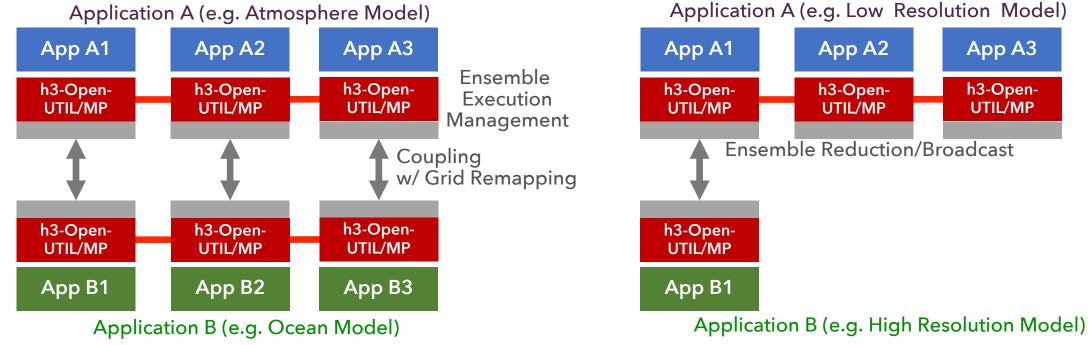

Get PB size


Get PB rank




Features of h3-Open-UTIL/MP

- General purpose coupling library
 - The grid system of the model dose not change in time
 - The exchange time interval of each data is constant.
- General features
 - Process group management
 - Data exchange management
 - Local to Local communication
 - Data exchange timing in the integration loop
 - > Spatial remapping between the different grid systems

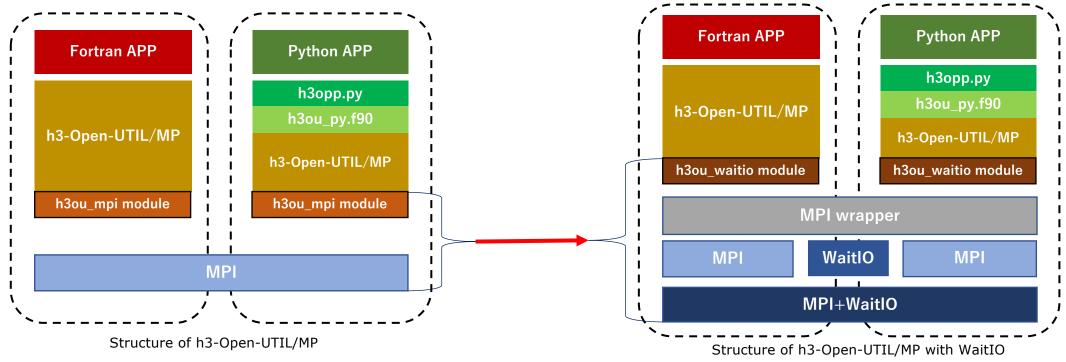


- Unique Features
 - Heterogeneous Coupling by collaborating with h3-Open-SYS/WaitIO
 - Ensemble Coupling
 - Python interface, etc.

Ensemble Coupling

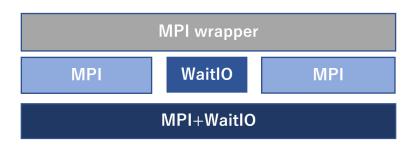
- Ensemble Calculation
 - An ensemble calculation is a technique to run many identical models with slightly different conditions.

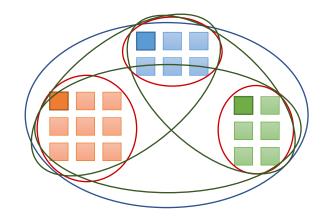
M x (A + B) execution

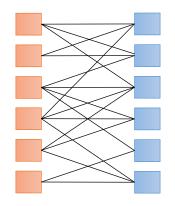

(MxA)+Bexecution

- Ensemble Coupling by h3-Open-UTIL/MP
 - Many to many: Ensemble of Atmosphere-Ocean Coupling
 - Many to one : Low Resolution Model Ensemble + High Resolution Model

Structure of UITL/MP with WaitIO

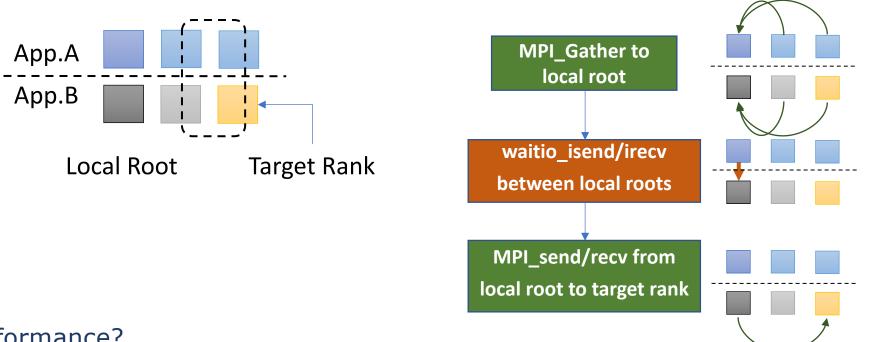

- h3-Open-UTIL/MP
 - A set of modules of Fortran95
 - These modules have a hierarchical structure.
 - A MPI handling module is at the bottom of this hierarchy.
 - All other modules are designed to use MPI through this MPI handling module.
- Collaboration with WaitIO was easy to achieve!
 - To make a communication library using MPI and WaitIO
 - To modify h3ou_mpi module to support this new library





Communication Library for UITL/MP with WaitIO

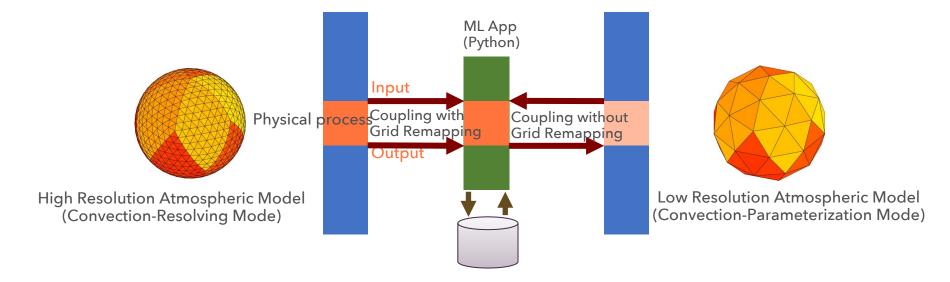
- Communication Patterns of h3-Open-UTIL/MP
 - Intra-application communication
 - One-to-one communication between applications
 - Global communication
- Inter node communication
 - One-to-One
 - Pure WaitIO functions : waitio_isend, waitio_irecv, waitio_wait
 - Global
 - Combination of MPI + WaitIO
 - Global functions called in UTIL/MP
 - MPI_Bcast, MPI_Gather, MPI_Reduce, MPI_AllReduce

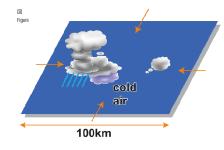


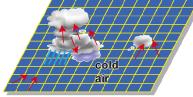
- Inter node communication by WaitIO

Global communication by WaitIO + MPI

- Example of Global Communication : MPI_Gahter
 - Data are gathered to local root by MPI_Gather
 - Gathered Data of App.A is sent to local root of App.B by waitio_isend/waitio_irecv
 - Merged Data is sent to target rank form local root of App.B by MPI_send/MPI_recv


• Performance?


- This algorithm is not efficient.
- These global communications are used only for the initialization process.
- > The impact on total performance is small.



Case Study of Heterogeneous Coupling

- Coupling of Atmospheric Model and Machine Learning Library
- Motivation of this experiment
 - Tow types of Atmospheric models: Cloud resolving VS Cloud parameterizing
 - Could resolving model is difficult to use for long time climate simulation
 - Low resolution parameterized models have many assumptions and uncertainties.
 - Replacing low-resolution cloud processes calculation with AI trained by cloud resolving calculation.

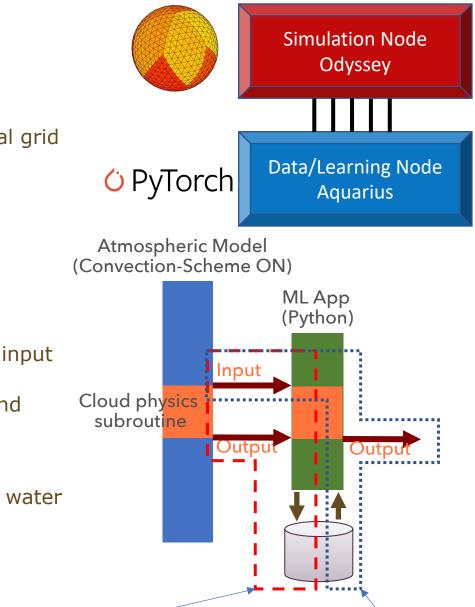
Phase2: Test phase

Experimental Design

- Atmospheric model on Odyssey
 - NICAM : global non-hydrostatic model which has an icosahedral grid
 - Resolution : horizontal : 10240, vertical : 78
- ML on Aquarius
 - Framework : PyTorch
 - Method : Three-Layer MLP
 - Resolution : horizontal : 10240, vertical : 78
- Experimental design
 - Phase1: PyTorch is trained to reproduce output variables from input variables of cloud physics subroutine.
 - Phase2:Reproduce the output variables from Input variables and training results
- Training data
 - Input : total air density (rho), internal energy (ein), density of water vapor (rho_q)

 Δrho

 ΔT

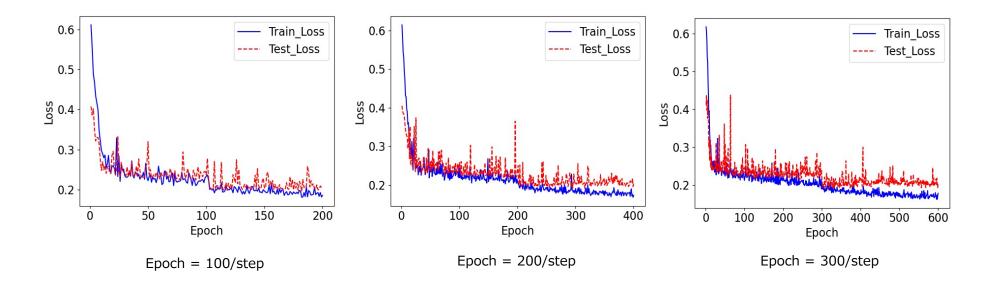

∆ein

 ΔT

 Δrho_q

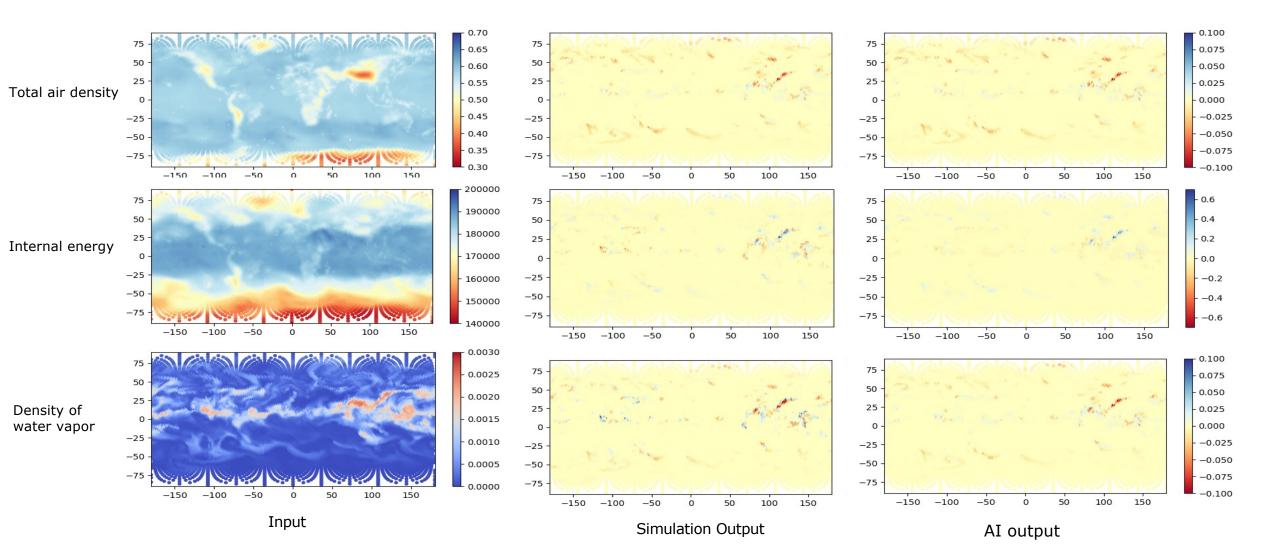
 ΔT

- Output : tendencies of input variables computed within the
 - cloud physics subroutine


Phase1: Training phase

Phase1, Training process

• Training


- 3 cases : 100, 200, 300 epochs per time step
- Convergence is very good in any case

Test calculation

- Compute output variables from input variables and PyTorch
 - The rough distribution of all variables is well reproduced
 - The reproductivity of extreme values is no good→next table

Summary of ML test

Correlation between reference and AI output

	slope	intercept	correlation coef.
air density	0.53847887	0.00017136	0.6194595
internal energy	0.58866578	-0.00019053	0.6769882
water vapor	0.56042855	0.000008773	0.6494912

- for more accurate reproductivity
 - Cloud physics is a complex system
 - NICAM subroutine mp_driver has INPUT:23, OUTPUT: 27, INOUT: 11
 - Variable selection is important!
 - Atmosphere has spatial (and temporal) structure
 - MLP: using only point-to-point relationship
 - Using an algorithm reflects spatio-temporal structure such as CNN

Heterogeneous coupling is successfully completed

Conclusion

• Summary

- h3-Ope-UTIL/MP is general purpose coupling library
- Enables heterogeneous coupling by collaborating with WaitIO
- Atmospheric model NICAM and ML APP was coupled on Odyssey + Aquarius
- Inter-node connectivity needs to be faster
- Future Work
 - Heterogeneous coupling
 - Iarger scale
 - better reproductivity
 - Ensemble coupling
 - Application case study is ongoing