Towards Next JCAHPC System

Toshihiro Hanawa
Information Technology Center
The University of Tokyo

Agenda

- Introduction of JCAHPC
 - Oakforest-PACS
- Design for next "Oakforest-PACS II" system
- Porting to GPU
- Projects on JHPCN
 - GPU Direct Storage
 - Programming for GPU
- (Feasibility Study for "Fugaku-next", Operation Technical Research Team)
- (Mixed Precision / Transprecision using FPGA)

JCAHPC: Joint Center for Advanced HPC

- Established in 2013
 - University of Tsukuba & University of Tokyo
 - Budgets of 2 Supercomputing Centers are combined
 - Promotion on Computational Science,
 Design/Procurement/Operation of Large-scale Systems
- Oakforest-PACS (OFP), 1st System of JCAHPC
 - 8,208 Intel Xeon Phi (KNL), 25PF, Fujitsu
 - Top500 (#6 (Nov.2016), #1 in Japan)
 - National Flagship System "in fact" (Oct.2019-Mar.2021) after shutdown of the K computer
 - Retired on March 31, 2022 (#39 (Nov.2021))
- We are starting procurement for OFP-II, successor of OFP, whose operation starts in April 2024

Mar 7th 2023

Real-Time Prediction of Severe Rainstorm by OFP

HPCI Urgent Call for Fighting against COVID-19 in Japan (FY.2020)

by 8 SC Centers of Natl. Univ., AIST etc. 6 of 14 accepted projects use U.Tokyo's Systems

		Cycto
Project Name	PI	Syste m
Fragment molecular orbital calculations on the main protease of COVID-19	Yuji Mochizuki (Rikkyo U.)	
Study on the evaluation of arrhythmogenic risk of COVID-19 candidate drugs	Toshiaki Hisada (UT Heart)	OFP
Prediction of dynamical structure of Spike protein of SARS-COVID19	Yuji Sugita (RIKEN)	
Computer-assisted search for inhibitory agents for SARS-CoV-2	Tyuji Hoshino (Chiba U.)	
Prediction and Countermeasure for virus droplet Infection under Indoor Environment: Case studies for massively-parallel simulation on Fugaku	Makoto Tsubokura (Kobe U.)	OBCX
Spreading of polydisperse droplets in a turbulent puff of saturated exhaled air workshop on	Marco Edoardo Rosti Charles Stro New Extreme Scale Applications	

[c/o Prof. Y. Mochizuki (Rikkto U.)]

[c/o Prof. M.Tsubokura (Kobe U.)]

How was OFP used ...

FY.2021

on Challenges for New Extreme Scale Applications

- Education
- Industry
- Bio Science
- Bio Informatics
- Social Science & Economy
- Data Science & Data Assimilation

How was OFP used ...

- ✓ FY2017, 2018: Half occupied by QCD users
- ✓ Increasing Earth/Space (Atmosphere&Ocean, Solid Earth, Astrophysics)
 - ◆ From Oakleaf-FX (FX10)

FY.2019

Data Sci./

Data Assim.

Data Sci./
Data Assim.

Bio Sci./
Bio. Informatics

Earth/

FY.2020

✓ Bio Sci., Informatics (COVID19), Severe Rainstorm for Tokyo Olympic Games

Materials

on Challenges for New Extreme Scale Applications

How was OFP used ...

Research Area (FY.2021: U.Tokyo)

Odyssey, Aquarius: After Aug., RB-H, RB-L: Nov.E

Towards 2nd Gen. System

 Nov. 2019: Agreed to continue design and operation of the 2nd generation system as JCAHPC

- Feb. 2021: Codename as "Oakforest-PACS II"
- Nov. 2022: Start procurement procedure: Request for Information (RFI)
- Apr. 2024: Target for operation start
- OFP was the top machine in the HPCI 2nd Tier system
 - OFP could run 2,000 node jobs at any time and kept supporting Japanese compute resources between K-computer decommission and Fugaku operation start

- Inherit from the philosophy of OFP: Support for users of large-scale applications continuously
- New Usage: Al for HPC/Science
- Co-design with applications

Development for New Types of Applications

- Highly-developed simulation by integration of "Simulation+Data+Learning": enabling more tightly-coupled cooperation with data
 - Data-assimilation + Simulation
 - Simulation parameter estimation by machine learning + Ensemble calculation
 Al for HPC / Science
 - Advancing efforts on Wisteria/BDEC-01 (U. Tokyo) or Cygnus+Pegasus (U. Tsukuba)
 - Wisteria/BDEC-01 consists of both "Odyssey" (simulation) node and "Aquarius" (Data+Learning) node
 - Cygnus: Extreme Computing with multi-hetero accelerator, Pegasus: Bigdata and Al
- Requirement for Carbon-Neutrality and Power efficiency

Introduction of GPU for most of compute resources (and still needs small ratio of CPU-only nodes)

Pre-Benchmark for OFP-II Design

- >3,000 users for OFP and our current systems
- It is difficult to perfectly migrate users to GPU cluster

 U.Tokyo considered this for Wisteria/BDEC-01, but finally gave up (Fall 2019)

- Varieties of GPU's
- Varieties of Programming Environment for GPU
 - OpenACC
 - OpenMP 5.0 Target offloading
 - Standard Language Support
 - Better for (OpenMP+MPI) users of OFP than Fall 2019
 - CUDA / HIP / SYCL
- Wisteria-Mercury for the prototype of OFP-II: Testbec for Porting Applications to GPU
 - Original plan was a node-Group extension of Wisteria/BDEC-01
- Pre-benchmarks for a decision of GPU on OFP-II and Mercury
 - Performance Estimation on H/W for OFP-II timeframe

External Network

Resources

Seven Benchmarks

Benchmarking by GPU vendors: Feb. – May. 2022

A: Benchmark for General CPU

B: Already GPU-enabled

Code	Description	Lang.	Parallelization	GPU	Category
P3D	3-D Poisson's Equation by Finite Volume Method	С	OpenMP	N/A	
GeoFEM/ICCG	Finite Element Method	Fortran	OpenMP, MPI	N/A	Α
H-Matrix	Hierarchical-Matrix calculation	Fortran	OpenMP, MPI	N/A	
QCD	Quantum-Chromo Dynamics simulation	Fortran	OpenMP, MPI	CUDA	
N-Body	N-Body simulation using FDPS	C++	OpenMP, MPI	CUDA	В
GROMACS	Molecular Dynamics simulation	C++	OpenMP, MPI	CUDA, HIP, SYCL	
SALMON	Ab-initio quantum-mechanical simulator for optics and nanoscience	Fortran	OpenMP, MPI	(OpenACC)	Α

GPU for OFP-II

- Officially selected NVIDIA's GPU for OFP-II (Jun. 2022)
 - Of course, GPU for Wisteria-Mercury must be same architecture
- Reason for selection
 - 1. Performance of benchmarks
 - 2. Ease of porting efforts
 - 3. Support environment
 - 4. Fortran Support

- Porting Activities
 - Basically, porting by users themselves
 - Special Support for big user groups and community-code providers: 16 groups
 - Kernel optimization, etc. by JCAHPC & NVIDIA
- Support for Users
 - Mini-camp, Tutorial, Consultation
 - Portal, Materials, Videos
 - https://jcahpc.github.io/gpu_porting/ (in Japanese)

Many thanks for support by JCAHPC and NVIDIA members !!

GPU Configuration for OFP-II

- CPU-GPU combination options
 - CPU: Intel/AMD x86-64 based + GPU: H100 or successor connected by PCIe, available NVLink among GPUs
 - CPU: NVIDIA Grace (Arm-based) + GPU: H100 or successor connected by NVLink
 - Cache Coherent between CPU-GPU
- GPUDirect * features
 - GPUDirect for RDMA: Direct communication between GPUs over nodes for GPU memory contents thru InfiniBand
 - GPUDirect Storage: Direct file IO between GPU memory contents and storage devices
 - Local SSD drives
 - Shared filesystem thru InfiniBand

JCAHPC¹⁹

Co-Design for Target Application

- Study on Next Generation Accelerator and Its File IO
 - PI: Prof. Hanawa (U. Tokyo), vice PI: Prof. Tatebe (U. Tsukuba)

Create benchmark based on these projects

- Establish to easily handle data on the GPU by direct file IO or overlap between compute and file IO
- Realize efficient GPU-to-file IO processing in real applications: Astrophysics, City LES,
 Machine Learning
- Practical Acceleration Methods to Achieve High Performance for Largescale Applications
 - PI: Prof. Shimokawabe (U. Tokyo), vice PI: Prof. Nukada (U. Tsukuba)
 - Port CPU applications running on supercomputers to GPU-equipped supercomputers
 - Establish methods for such porting strategy based on directive or standard parallelism supported by programming languages

Accepted as a JHPCN project [JHPCN: https://jhpcn-kyoten.itc.u-tokyo.ac.jp/en/]

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures)

Basic Performance Result(1): Local SSD

PCIe Topology & Measurement Methods

Data-transfer methods

- GPU ↔ Storage (GPUDirect Storage)
- CPU ↔ Storage
- GPU ↔ CPU ↔ Storage

Settings

Filesize: 1GB

 Blocksize: Sequential 1MB / Random 4kB

- Runtime: 120s

- No. of threads: 2, 4, 8, ..., 256

GPUs assigned to each NVMe

Measured three times each

Sequential Access

Sequential write (threads=8)

Sequential read (threads=16)

- Bandwidth is larger when:
 - block size is 256kB; the advantages of all transfer methods are not very different (sequential write)
 - block size is more than 256kB; async CPU has the highest bandwidth (sequential read)

Random Access

- IOPS is larger when:
 - no. of thread is smaller; CPU has the highest IOPS of the three transfer methods (random write)
 - no. of thread is bigger; CPU has the highest IOPS of the three transfer methods (random read)

Basic Performance Result (2): VM to Lustre (NVMe SSD)

- mdx: a Platform for Building Data-Empowered Society
 - Cloud-like Supercomputer system virtualized by VMware ESXi
 - https://mdx.jp/en/
- VM (1GPU, 18 vCPUs) ⇔ Lustre FS with NVMe SSD
 - GPU: PCle pass through, 100GbE: SR-IOV
 - 10GB, iosize 1MB, Striping in maximum, best from 3 trials

Need to consider optimal transfer method based on transfer size and number of threads

# of th	mode	Read (GiB/s)	Write (GiB/s)
4	nonGDS	2.57	2.93
	GDS	3.46	3.66
16	nonGDS	7.11	7.19
	GDS	8.88	8.83
32	nonGDS	2.05	8.75
	GDS	9.34	8.47
128	nonGDS	0.22	10.03
	GDS	0.24	8.80

GDS Performance in Astrophysics

• GOTHIC (Miki & Umemura 2017, Miki 2019)

GPU-optimized tree code

 GDS implementation: HDF5 via Virtual File Driver (instead of directly using file API)

- "cuFile" behavior can be controlled by JSON
 - Disable GDS: "gds_rdma_write_support": false
- Galaxy collision between M31 and a past satellite galaxy
- Very frequent output for fast-moving particles (~1k out of ~10M particles)
- GDS doubles the write performance

GPU Porting project

The research project [PI: Prof. Shimokawabe]

 The goal of this research project is to port CPU applications running on supercomputers to GPU-equipped supercomputers and to establish methods for such porting.

One of the target applications: OpenSWPC

OpenSWPC: a simulation code for seismic wave propagation

 Porting OpenSWPC, which is parallelized by OpenMP for CPU, to NVIDIA GPU using Fortran's standard parallelization

syntax DO CONCURRENT.

```
!$omp parallel private(j,k,dxSxx)
do j=jbeg, jend
    do k=kbeg, kend
        dxSxx = Sxx(k,1,j) - Sxx(k,0,j)
        Vx(k,0,j) = Vx(k,0,j) + gxe0(1) * dxSxx
    end do
end do
!$omp end parallel
```

```
1.6x faster 4x A100 vs 16x A64FX
3.2x faster in 16GPU vs 4GPU

do concurrent (j=jbeg: jend, k=kbeg: kend
```

2.2x faster 4x A100 vs 16x Xeon

```
do concurrent (j=jbeg: jend, k=kbeg: kend)
local(dxSxx)
    dxSxx = Sxx(k ,1,j) - Sxx(k ,0 ,j)
    Vx(k,0,j) = Vx(k,0,j) + gxe0(1) * dxSxx
end do
```


https://github.com/tktmyd/OpenSWPC

Performance of OpenSWPC on CPU/GPU

[Seimi, Nukada (Univ. of Tsukuba), 2023]

Summary (Oakforest-PACS II)

Oakforest-PACS II (OFP-II)

- Design and Procurement for starting operation in Apr. 2024 (or later)
- Target: 200+ PFLOPS, GPU nodes and CPU only nodes (relatively small number)
- Designed and developed as a leading machine in the second class of HPCI, next to Fugaku
 - Advance co-design with applications
- Promote GPU porting of existing applications using Wisteria-Mercury

(Note) Arrows don't mean the exact period