Hybrid AI/HPC Approaches and Linear Algebra

HPC challenges for new extreme scale applications

Paris, March 6-7, 2023

Nahid Emad University of Paris Saclay / UVSQ Maison de la Simulation & LI-PaRAD

Linear algebra main problem in ML/DL

- In machine learning, many problems can be solved by **linear transformations** and systems of linear equations.
- Let A and Y be n-size matrix representing a set of n observations and the vector of their labels. The search of a function f(A)=Y can be expressed as a linear system:

Ax=Y

• Let $U = [u_1, ..., u_n]$ be the set of eigenvectors of A. Their linear transformation by A does not change their orientation but only scales them.

 $\begin{bmatrix} u_1, u_2 \end{bmatrix}$ $\begin{bmatrix} u_1 \\ u_1 \end{bmatrix}$ $\begin{bmatrix} u_1 \\ u_1 \end{bmatrix}$ $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ $\begin{bmatrix} u_1, u_2 \end{bmatrix} = \begin{pmatrix} 0.5 & 0 \\ 0 & 3 \end{pmatrix} \begin{bmatrix} u_1, u_2 \end{bmatrix}$

Dominant eigenspace in ML

Principal Component Analysis: The goal is to find an orthonormal basis of the space of a dataset such that the variance of the dataset (degree of dispersion) in this basis is maximized. PCA helps reduce redundancies in datasets and extract important features while preserving accuracy.

- Let $X \in \mathbb{R}^{n \times p}$ be a centered matrix of *n* observations of *p* features. The PC of *X* are the dominant eigenvectors of its covariance matrix $A = \frac{1}{n}X^TX$.
- The PC of X are its dominant right singular vectors: $X = U\Sigma V^T$ with $U \in \mathbb{R}^{n \times n}$, $V \in \mathbb{R}^{p \times p}$ unitary and $\Sigma \in \mathbb{R}^{n \times p}$ diagonal matrices of singular values. $A = X^T X = V\Sigma^2 V^T$. The columns of V are the right singular vectors of X.

PageRank algorithm example: The Markov matrix leads to the equation which the steady state depends on one dominant component: $\lambda_1^k u_1 + \alpha_1 \lambda_2^k u_2 + ... + \alpha_n \lambda_1^k u_n$.

ML methods and linear algebra

Goal: Build smarter machines thinking and acting on their own (needs of training –still- and more and more data)

- Supervised machine learning methods
 - Linear regression, logistic regression, recommendation systems, ANN, etc.
 - Linear algebra problem as linear systems and eigenproblems
- Unsupervised machine learning methods
 - K-means for partitioning, dimensionality reduction, CPA, etc.
 - Essentially **eigenproblems** and **SVD**
- Reinforcement learning methods (exploration & exploitation)
 - Bandit, Markovian decision problems, game trees.

High performance data analysis

- **Data production** is now faster than compute capabilities
- Applications are classical simulation, social network-based simulation, ML algorithms
- Emerging Exascale supercomputers : Multi-level architectures (processor, memory, ...), mixed arithmetic (16, 32, 64 bits,...), ..., and convergence of distributed and parallel computing inside them.
- Need of new **programming paradigms** for this extreme computational and data sciences programming.
- New methods must be developed (involving applied math, graph theory, Bayesian network, statistic, linear algebra, game theory, ...) but also, the new approaches such as transformer used in NLP.
- **Big Data analysis and HPC convergence** is crucial to propose future machine learning algorithm for high-scale platforms and supercomputers

New paradigms for new intelligent applications

Outline

- 1. Main problems in linear algebra (moderate size)
- 2. Large and sparse linear algebra problem
- 3. A brief overview of IA : computing viewpoint (ML/DL)
- 4. Some applications of High-performance LA and AI
- 5. Concluding remarks

Main problems in linear algebra (moderate size)

Linear system (LS) :

Let $A \in \mathbb{C}^{n \times n}$, $b \in \mathbb{C}^n$, find $x \in \mathbb{C}^n$, such that : $A \cdot x = b$

Eigenproblem (EIG) :

Let $A \in \mathbb{C}^{n \times n}$, find $\lambda_i \in \mathbb{C}$ and $u_i \in \mathbb{C}^n$ such that $: A.u_i = \lambda_i.u_i \quad (i = 1, ..., n)$

- Solving LS (topic well mastered overall)
 - Direct methods as Gauss and Gauss-Jordan, Cholesky, Householder based on LU, Cholesky, QR decomposition.
 - ▶ Iterative methods as Jacobi, Gauss-Seidel, Relaxation.
- Solving EIG (topic not so well mastered)
 - > Only iterative methods (Abel-Ruffini theorem) as Jacobi and QR

Focus on Eigenproblem

Eigenproblem (EIG) :

Let $A \in \mathbb{C}^{n \times n}$, find $\lambda_i \in \mathbb{C}$ and $u_i \in \mathbb{C}^n$ such that $: A \cdot u_i = \lambda_i \cdot u_i$ (i = 1, ..., n)

Power of eigenvectors :

- A doesn't change the orientation of an eigenvector and/or eigenspace but just scales it.
- Principal components or axes of dataset:

Focus on Eigenproblem

Eigenproblem (EIG) :

Let $A \in \mathbb{C}^{n \times n}$, find $\lambda_i \in \mathbb{C}$ and $u_i \in \mathbb{C}^n$ such that $: A \cdot u_i = \lambda_i \cdot u_i$ (i = 1, ..., n)

A

Power of eigenvectors :

- A doesn't change the direction of an eigenvector and/or eigenspace but just scales it.
 Principal components or axes
- The backbones of dataset Just scaled $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ $\binom{1}{1}$ Scaled • Rotated Eigen-elements of A : $\lambda_1 = 0$, $\lambda_2 = 5$ and $v_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

x

of dataset:

Ax

2. Large and sparse linear algebra problems

- Sparse dataset
 - > Avoiding fill-in
 - Problem : how to compress the dataset ? Use of ML methods
- Large dataset
 - Dimensionality reduction projection onto Krylov subspace
 - Problem : how to choose the subspace-size ? Too large/small...

2. Large and sparse linear algebra problems

Iterative projection method

- Preserve sparsity
- Reduce the problem size

Main problems for these methods

Sparsity processing

What about m?

➢ Krylov subspace: optimal choice of v for K_m(A, v) = span (v, Av, ..., A^{m-1}v) optimal choice of m and v?

Innovative Approach : Unite and Conquer methods

Suppose we have ℓ iterative methods to solve the same given problem. The unite and conquer approach consists of making collaborate these ℓ methods in order to accelerate the convergence of the whole system.

Characteristics of UC methods

- Multi level parallelism (coarse grain and fine grain)
- Asynchronous communication
- Fault tolerance
- Great potential to dynamic load balancing
- Many parameters, many reuse software components
- Need well suited «standard» programming tools

Well suited to petascale & emerging exascale computing systems

Innovative Approach : Unite and Conquer methods

Suppose we have ℓ iterative methods to solve the same given problem. The unite and conquer approach consists of making collaborate these ℓ methods in order to accelerate the convergence of the whole system.

Well suited to petascale & emerging exascale computing systems

Innovative Approach : Unite and Conquer methods

Due to the numerical and computational properties of a UC method, its overall convergence and computational performance are better than that of each of its co-methods individually.

- Multiple-Method : Case of UCM when the co-methods are the instances of the same iterative method. Example: MERAM, MIRAM, MLnczos, with different or nested subspaces.
- The asynchronism of communications implies better computational performance but introduces a certain *non-determinism*.
- The application of the UC approach to ML methods, which are inherently nondeterministic, does not suffer from this non-determinism.

3. A brief overview of AI : ML/DL computing viewpoint

1. HPC and AI convergence

- 2. High performance LA and AI; some applications
 - Sparse computation : a common topic of HPLA & ML/DL
 - Focus on clustering (unsupervised ML) using UC methods
 - K-means and spectral computation
 - nvGraph of NVIDIA
 - Focus on (semi)supervised (classification) using UC methods
 - UCM application to ensemble learning
 - UCEL framework

HPC and AI convergence

- About ML/DL:
- 1943 : first NN
- 1957 : first NN with training
- 1974-1981 : "silence"
- **1981** : first perceptron multilayer
- 1990 : first CNN-LeCun
- **1997** : first RNN (LSTMs)
- Circa 2012 : The flight of ML/DL with Big Data and computing power
- Circa 2017 : Extension of NLP with transformers

Artificial Intelligence / Machine Learning Classification

http://image.slidesharecdn.com /deepdiveinaimlventurelandsca pe-150831132221-lva1app6891/95/deepdive-in-aimlventure-landscape-by-ajitnazre-rahul-garg-3-638.jpg?cb=1441027412

https://raw.githubuser content.com/trekhleb/ homemade-machinelearning/master/imag es/machine-learningmap.png

Sparse Computation : A common topic of HPLA & ML/DL

Automatic detection of the best sparse compression format as a function of the context (numerical method, parallel programming model, parallel/distributed architecture, etc.).

- Auto-tunig (PhD of Hamdi-Labri), Expert System and then Machine Learning (PhD of Mehrez).
- ➢ I. Mehrez, O. Hamdi-Larbi, T. Dufaud, N. Emad. Machine Learning for Optimal Compression Format Prediction on Multiprocessor Platform. HPCS 2018: 213-220.
- Ihrak Mehrez. Auto-tuning for automatic detection of the best compression format for sparse matrix (PhD, 2018). University of Paris Saclay, France.
- Olfa Hamdi-Larbi. Study of sparse matrix compression for numerical computation on highscale distributed systems (PhD, 2010). UVSQ.

Focus on clustering (unsupervised ML)

Two main methods allow partitioning vertices V of a graph G = (V, E) in a set of clusters $S_k \subseteq V$ such that $V = \bigcup_{k=1}^p S_k$ are **modularity maximization** and **minimum balanced cut**. This by computing the largest eigenpairs of the modularity matrix or the smallest of the Laplacian matrix.

Focus on Clustering (2)

1. Let G = (V, E) be an input graph and A be its weighted adjacency matrix. 2. Let p be the number of desired clusters.

- 3. Set the modularity matrix $B = A \frac{1}{2\omega} v v^T$
- 4. Find p largest eigenpairs $BU = U\Sigma$, where $\Sigma = diag(\lambda_1, ..., \lambda_p)$
- 5. Scale eigenvectors *U* by row or by column (optional).

6. Run clustering algorithm, such as k-means, on points defined by rows of U.

Focus on Clustering (3)

Profiling: modularity clustering

The sparse matrix vector multiplication takes 90% of the time in the eigensolver

The eigensolver takes 90% of the time

Focus on clustering (4)

A. Fender, N. Emad, S. Petiton, M. Naumov, *Parallel Modularity Clustering*, Procedia Computer Science, Volume 108, 2017, Pages 1793-1802

Focus on (semi)supervised classification using UC methods

A process of categorizing a given dataset (structured or unstructured) into predefined classes (label or categories).

- Classification predictive modeling
- Binary classification
- Multi-class classification
- Multi-label classification
- Imbalanced classification

Jiang, Yiyue et al., Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic timestretch microscop, Lab Chip Journal, Vol. 17, 2426-2434, The Royal Society of Chemistry, 2017.

Classification methods: Logistic Regression, naive Bayes, stochastic Gradient Descent, KNN, Decision Tree, Random Forest, ANN, SVM, ...

Application UC approach to ensemble learning for classification

Ensemble Learning methods

Bagging technique

- 1. Start. Choose ℓ the number of the bags and $m (\leq n)$ the size of the bags.
- 2. Iterate. For i = 1, ..., ℓ do in parallel
 a)Sampling. Select the bag B_i by a random sampling technique with replacement on LD,
 b)Training and testing. Train a model L_i on the bag B_i and test L_i with TD dataset.
- 3. Share. On all the results of ℓ processes, use a selection system (like voting) to get the final prediction.

• The same weak learner

- Selection of the result by a voting system
- Intrinsic data parallelism

Ensemble Learning methods

Boosting technique

- 1. Start. Choose ℓ, m the number and the size of the bags, the base week leaner L_1 and define the bag $B_1 =$ LD.
- **2.** Iterate. For $i = 1, ..., \ell$ do
 - a) Training and testing. Train L_i leaner on dataset B_i, produce L_i model, test it on B_i and select W_i the k_i-size miss-predicted sub-dataset of LD. If (P (L_i) ≥ θ) then put best = i and stop.
 b) Sampling. Set the bag B_{i+1}= (1- α_i) R_i ∪ α_iW_i, where α_i is the weight given to miss-predicted data and R_i is the set of (m - k_i) correctly predicted data in B_i and go to 2.
- 3. Result. Set L_{best} as a weighted combination of the previous ℓ leaners.

Iterative process

- The miss-predicted data weighted more
- Selection of a weighted combination of the learners

UCEL: Unite and Conquer and Ensemble Learning

- Co-methods: Ensemble base-learners
- Partial initial parameters: Bags
- Restarting strategy is based on intermediate global result of the learners

- A. Diop, N. Emad, and T. Winter. *A Parallel and Scalable Framework for Insider Threat Detection*. In 27th IEEE International Conference HiPC, 16-19 Dec. 2020, Pune, India.
- A. Diop, N. Emad, and T. Winter. *A Unite and Conquer Based Ensemble Learning Method for User Behavior Modeling*. In 39th IEEE IPCCC Conference, Nov. 6th 8th, 2020, Austin, Texas, USA.

Evolution of the AUC score over the cycles with anomaly detection co-methods

Left: MRobcov(10) vs individual boosted Robcov,

Right: 4 different anomaly detection methods vs individual boosted co-methods

(a) multiple Robcov (10) (b) BP (IForest

(b) BP (IForest, OcSVM, Robcov, LOF)

When an individual co-method suffers either from underfitting, overfitting, poor calibration of the hyperparameters or not having enough sample to establish a good decision boundary, UCEL boosts their low AUC-score over the cycles.

(a) mEtriple of the AUC score over the cycles with Focus on graph-based anomaly (LOF) detection using PageRank co-methods

Even a powerful co-method like PR is improved by UCEL.

(a) MultiplePR(4) (b) PB(4AD, PR, LSTM)

Evolution of the AUC score over the cycles with Focus on graph-based anomaly detection using PageRank co-methods

Even a powerful co-method like PR is improved by UCEL.

Weak scalability: due to the synchronization steps in the end of each cycle.

Strong scalability: the strong scalability of 10 MLP as co-methods, a dataset size of 500000 entries. The speedup rises from 1 to approximately 4.5 when we increase the number of processing cores.

Concluding Remarks

- Important impact of HP eigenvalue computation in AI : Be aware of not always using the libraries.
- Interactions between machine learning and linear algebra approaches must be studied more.
 - > UCEL is a good example, and the approach is extensible.
 - > Well adapted to new and emerging supercomputers
- ML presents a formidable tool bringing a tsunami of solutions to many problems
 - Experiment data (even when it does not seem interesting) must be saved...