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Application Challenges

* Al Pathologist: Answer nuanced questions about
patients and disease categories

* Big Picture Clinical Goal: Predict outcome and response
to treatment using all available image, clinical,
molecular data



Answers to Nuanced Questions

Multidiscuss ion with ZEISS Microsco pes

 Difficult cases require involved
back and forth discussions

e Current Al methods select
between a small number of

alternatives

* New Al methods should be able
to select between hundreds of
alternatives and to provide
nuanced reasoning with visual
and verbal examples




Applications context — Cancer

Introducing Aperio GT 450

~ ,
Directly load racks from cover slipper to scanner

Slide Scanner — GT450 — Roughly 1 minute Tray of glass slides — generally a Pathologist
to acquire a (roughly) 10 Gigapixel image needs to examine many slides for each patient



Example GBM (Brain Tumor) Image




Brain Tumor Classification — CVPR 2016

Contributions

« Automatic discriminative patch identification for patch-CNN training
« Arobust, general method to cor?bine patch-level predictions

5 An important applicatic:m: cancer classification
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Combining Information from Patches

Advantage:
» The prediction of every patch counts
-> robustness & generalization

b E A f
L= Logistic Regression . .

Histogram of Patch-level Classes

Engineering details

* CNN architecture: AlexNet and VGG16 » Dataset: TCGA [gdc-portal.nci.nih.gov]
* Patch size: 500x500, Multiple scale » Number of Patches: 1000 per WS




Brain Tumor Classification Results

________Methods Accuracy

Glioma is

* The most common brain cancer

* The leading cause of cancer-related
deaths in people under age 20

VGG16 features + BoW + SVM
Patch-CNN + Voting
Patch-CNN + Max-pooling

Our method

Pathologists’ Agreement [M. Gupta 2015]
(on a similar dataset)

Confusion Matrix: OA is very hard even for pathologists GBM oD OA DA AO
Glioblastoma, Grade IV (GBM) 214 2
Oligodendroglioma, Grade Il (OD) 1 47 22 2 1
Oligoastrocvtoma, Grade Il & Il (OA) 1 18 40 8 1
Diffuse Astrocytoma, Grade |l (DA) 3 6 20 1
Anaplastic Astrocytoma, Grade |l (AA) 3 3 3
Anaplastic Oligodendroglioma, Grade Il (AO) 2 3 1

Le Hou, Dimitris Samaras, Tahsin Kurc, Yi Gao, Liz Vanner, James

Davis, Joel Saltz

691 Google Scholar citations; PaigeAl FDA cleared clinical

application using closely related method




Table1 2021 WHO Classification of Tumors of the Central Nervous System. Provisional Entities are in ltalics

World Health Organization Classification of Tumors of the Central Nervous System, fifth edition
Gliomas, glioneuronal tumors, and neuronal tumors
Adult-type diffuse gliomas
Astrocytoma, IDH-mutant
Oligodendroglioma, IDH-mutant, and 1p/19g-codeleted
Glioblastoma, IDH-wildtype
Pediatric-type diffuse low-grade gliomas
Diffuse astrocytoma, MYB- or MYBL1-altered
Angiocentric glioma
Polymorphous low-grade neuroepithelial tumor of the young
Diffuse low-grade glioma, MAPK pathway-altered
Pediatric-type diffuse high-grade gliomas
Diffuse midline glioma, H3 K27-altered
Diffuse hemispheric glioma, H3 G34-mutant
Diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype
Infant-type hemispheric glioma
Circumscribed [
Pilocytic ast
y Categories

jomas

Subependymal giant cell astrocytoma

Chordoid glioma

Astroblastoma, MN1-altered
Glioneuronal and neuronal tumors

Ganglioglioma

Pleomorphi

Dysembryopl

Desmoplastic gnfantile ganglioglioma / desmoplastic infa strocytoma
Diffuse glion;»['

i heffa

Papillary glioneuronal tumor
Rosette-forming glioneuronal tumor

d Al Algori

Multinodular and vacuolating al tumor
Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease)
Central neurocytoma
Extraventricular neurocytoma
Cerebellar liponeurocytoma

Ependymal tumors
Supratentorial ependymoma
Supratentorial ependymoma, ZFTA fusion-positive
Supratentorial ependymoma, YAP1 fusion-positive
Posterior fossa ependymoma
Posterior fossa ependymoma, group PFA
Posterior fossa ependymoma, group PFB
Spinal ependymoma
Spinal ependymoma, MYCN-amplified
Myxopapillary ependymoma
Subependymoma

O.

ommon

Table1 Continued

World Health Organization Classification of Tumors of the Central Nervous System, fifth edition

Choroid plexus tumors
Choroid plexus papilloma
Atypical choroid plexus papilloma
Choroid plexus carcinoma
Embryonal tumors
Medulloblastoma
Medulloblastomas, molecularly defined
Medulloblastoma, WNT-activated
Medulloblastoma, SHH-activated and TP53-wildtype
Medulloblastoma, SHH-activated and TP53-mutant
Medulloblastoma, non-WNT/non-SHH
Medulloblastomas, histologically defined
Other CNS embryonal tumors
Atypical teratoid/rhabdoid tumor
Cribriform neuroepithelial tumor
E onal tumor with multilayered rosgttes

oY F

3ratn Tumo

Pineal parenchymal tumor of intermediate differentiation

eurob

tumor

embry(
Pineal tumors
Pineocytoma

Pineoblastoma
Papillary tumor of the pineal region

Desmoplastic myxoid tumor of the pineal region, SMARCB1-mutant

thhms Currently
Options

Hybrid nerve sheath tumor
Malignant melanotic nerve sheath tumor

Meningiomas
Meningioma
Mesenchymal, non-meningothelial tumors
Soft tissue tumors
Fibroblastic and myofibroblastic tumors
Solitary fibrous tumor
Vascular tumors
Hemangiomas and vascular malformations
Hemangioblastoma
Skeletal muscle tumors
Rhabdomyosarcoma
Uncertain differentiation
Intracranial mesenchymal tumor, FET-CREB fusion-positive
CIC-rearranged sarcoma
Primary intracranial sarcoma, DICER1-mutant
Ewing sarcoma



The Promise of Self Supervised Learning

* Large language models are trained on huge quantities of text
using methods that include filling in masked words, predicting

next sentence

* These models are now able to generate sophisticated
responses to questions

* Many open issues but see next example of nuanced question
involving lymphomas



what lymphomas resemble hodgkins disease but do not have reed sternberg cells

There are several types of lymphomas that can resemble Hodgkin's disease
but do not have Reed-Sternberg cells. Reed-Sternberg cells are large,
abnormal lymphocytes that are the hallmark of classical Hodgkin's lymphoma.

Some of the lymphomas that can mimic Hodgkin's disease but lack Reed-
Sternberg cells include:

Nodular lymphocyte-predominant Hodgkin's lymphoma: This is a rare type of
Hodgkin's lymphoma that accounts for about 5% of all cases. It is
characterized by the presence of large, popcorn-shaped lymphocytes called
"L&H cells" that resemble normal B cells.

T-cell/histiocyte-rich large B-cell lymphoma: This is a subtype of diffuse large PEEST
B-cell lymphoma that can mimic classical Hodgkin's lymphoma. It is

characterized by the presence of scattered large B cells, surrounded by a C h atG PT
background of small T cells and histiocytes.
it O

Anaplastic large cell lymphoma: This is a type of non-Hodgkin's lymphoma : (". L ’.

that can mimic Hodgkin's disease. It is characterized by the presence of large, B PR
anaplastic lymphocytes that express CD30, a marker also seen in Hodgkin's s - 7
disease. S

Mediastinal large B-cell lymphoma: This is a subtype of diffuse large B-cell

lymphoma that often presents as a large mass in the mediastinum (the area ' X » ‘ :_ : £ Hodg
between the lungs). It can mimic Hodgkin's disease due to the presence of ) - il R
fibrosis and the presence of some large, atypical lymphoid cells. ' mphoma \



Generate and solve various visual
puzzles

Reassemble jigsaw puzzles
Fill in masked regions

Recognize warped, distorted,
noisy images

Unsupervised Learning of Visual
Representations by Solving Jigsaw Puzzles

Mehdi Noroozi and Paolo Favaro

https://arxiv.org/pdf/1603
.09246.pdf



Self Supervision in Pathology

Gigapixel Images

Images can have millions of cells,
many tens of thousands + of glands,
crypts ducts

Models need to learn syntax and
semantics of tissue

We are doing this, starting out with
generating a model using self
supervised training using whole slide
images and cell density

Fine tuned codes have above SOTA
performance on classification and
segmentation tasks

Saarthak Kapse Jingwei Zhang
Stony Brook Stony Brook



IPMI 2023 S Precise Location Matching Improves Dense Contrastive

2023 International Conference on

Image Processing and Machine I:te\llgence 3 3 ; >‘ . Leaming in Digital Pathology

Februa 2023 |

Jingwei Zhangl*, Saarthak Kapsel*, Ke Ma?, Prateek Prasannal,
Maria Vakalopoulou?®, Joel Saltz!, and Dimitris Samaras’
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Self Supervised Learning in Pathology
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* Deep learning based pipelines
adapted to carry out scientific tasks

* Characterize detailed composition
and structure of tissue — Radiology,
Pathology and molecular
composition
— Predict outcome, treatment

response, steer treatment

—"Real World” large population
research studies

— Scientific studies involving disease
mechanism




Applications of Al based Tumor Infiltrating
Lymphocyte Analysis Methods (TILS)

Lymphocytes are immune cells

6 BREAST
Immune therapy has become ubiquitous X CANCER

INTERNATIONAL IMMUNO-ONCOLOGY WORKING GROUP

Many clinical studies involving many types of
cancer

Spatial patterns of distribution of TILs maps to

ascertain the functional immune status of the \ = T I G E R

tumor microenvironment Tumor InfiltratinG lymphocytes in breast cancER

? Sk ;.
\\\

Combine diagnostic criteria and TILs to stratify
patients, guide clinical management, and
select therapy (e.g. immunotherapy)



Teaching Algorithms to Recognize Immune Cells in
Confusing Contexts

Whole-slide Tumor Infiltrating Lymphocyte (TIL) mapping

v

Deep Learning-Based
Mapping of Tumor Infiltrating
Lymphocytes in Whole Slide
Images of 23 Types of Cancer

Shahira Abousamra'”, Rajarsi Gupta?, Le Hou', Rebecca Batiste®, Tianhao Zhao®,
Anand Shankar?, Arvind Rao*, Chao Chen?, Dimitris Samaras’, Tahsin Kurc?
and Joel Saltz?

TIL positive — Red
TIL confounders - Green




Tumor TIL Analyses

High-resolution detection and
classification of tumor cells,
lymphocytes, and stromal cells
in the entirety of whole slide
images
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The American Journal of Pathology
Volume 190, Issue 7, July 2020, Pages 1491-1504
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Utilizing Automated Breast Cancer Detection to
Identify Spatial Distributions of Tumor-
Infiltrating Lymphocytes in Invasive Breast

Cancer

Han Le * & X, Rajarsi Gupta T3, Le Hou *, Shahira Abousamra *, Danielle Fassler T, Luke Torre-Healy T Richard A.
Moffitt T ¥ Tahsin Kurc T, Dimitris Samaras *, Rebecca Batiste ¥, Tianhao Zhao ¥, Arvind Rao , Alison L. Van Dyke 1,
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Qualitative evaluation of lymphocyte distribution enables interpretable
entification

risk io
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Presence of multiple risky features stably correlates with risk in

new data set

TCGA-BRCA - Original dataset
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Collaboration with SEER Registries to Bring AI Pathology to
Surveillance and to Create Real World Clinical Research Datasets

Seattle-
Puget
Sound
MA
Greater -
California** CT

]
Greater Bay** ‘

) Participating SEER Registries: New

Angeles Jersey, Kentucky, Georgia, New
i York
Jo~ [ = 9
;/Xd(r ”p\“\% ' HT .“'
ORIGINAL ARTICLE

J Pathol Inform 2022, 13:5

An expandable informatics framework for enhancing central cancer registries with digital
pathology specimens, computational imaging tools, and advanced mining capabilities

David J Foran1, Eric B Durbin2, Wenjin Chen3, Evita Sadimin?, Ashish Sharma?, Imon Banerjee4, Tahsin Kurc3, Nan Li4, Antoinette M Stroup®,
Gerald Harris®, Annie Gu4, Maria Schymura?, Rajarsi Gupta, Erich Bremer®, Joseph Balsamo®, Tammy DiPrima3, Feigiao Wang®, Shahira

Abousamra8, Dimitris Samaras8, Isaac Hands?, Kevin Ward1?, Joel H Saltz®



Complex Al Pipelines
Spatial Contexts -- Cell Detection and Classification

* Classification accuracy is frequently context sensitive

* Training on new tissue types and new cell categorles is time
consuming ’“

Method detects and classifies nuclei
* Training requires “dotting” nuclei

Multi-Class Cell Detection Using Spatial Context Representation

Shahira Abousamra, David Belinsky, John Van Arnam, Felicia Allard, Eric Yee,
Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Joel Saltz, Chao Chen
Stony Brook University
Stony Brook, NY 11794, USA

: ICCV&?E’?EJRE




Pipeline encompasses cell detection, cell classifier
and learning category specific spatial statistics
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Extreme Scale Deployments

Understanding and leveraging the I/O patterns
of emerging machine learning analytics

Ana Gainaru', Dmitry Ganyushin!, Bing Xie!, Tahsin Kurc?, Joel Saltz2, Sarp
Orall, Norbert Podhorszki', Franz Poschel?, Axel Huebl®, and Scott Klasky?

! Qak Ridge National Laboratory, Oak Ridge, USA, Appllcatlon 31 TR

2 Stony Brook University, New York, USA,
3 Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA
4 Center for Advanced Systems Understanding, Gorlitz, Germany

Application 2 \

Classifi catl Classificati

 Middleware for managing image and ——
model data to optimize memory {.
hierarchy performance in complex
training and prediction tasks

A

Classification

* Collaboration with ORNL to explore
impact using ADIOS and tumor
infiltrating lymphocyte tasks



Observations

Algorithms designed to do specific things -> generalized trainable
algorithms

Self supervision, multi-modal friendly methods such as transformers
Multi-modal/Multi-task learning

Combination of very large data, need for self-supervision, multi-modal
integration creates a perfect storm for exascale (and beyond) computing
requirements

Analyses typically carried out with <100,000 whole slide images (usually
much smaller) — large institutions now have 10M+ whole slide image
datasets

Need for extreme scale system software to control complexity, validate
pipelines and to optimize performance



Stony Brook Multi-Modal Deep Learning Faculty

Dimitis Samaras, Chao Chen, Tahsin Kurc, Prateek Prasanna, Raj Gupta



SEER UG3 Team

e Stony Brook
- Joel Saltz MD, PhD
— Tahsin Kurc PhD
— Dimitris Samara PhD
— Erich Bremer
- Le Hou
— Shahira Abousamra
— Raj Gupta
- Han Le
- Bridge Wang
e Emory
— Ashish Sharma PhD
— Ryan Birmingham
— Nan Li
e (Georgia SEER Registry
— Kevin Ward MPH, PhD

Rutgers

— David J. Foran PhD

- Evita Sadimin, MD

- Wenjin Chen, PhD

— Doreen Loh M.S.

- Jian Ren, Ph.D

— Christine Minerowicz, MD
Rutgers SEER/ NJ State Cancer
Registry

— Antoinette Stroup, PhD

— Adrian Botchway, CTR

— Gerald Harris, PhD

University Kentucky; Kentucky
SEER Registry

— Eric B. Durbin, DrPH, MS

- Isaac Hands, MPH

— John Williams, MA

— Justin Levens
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2123920 from the National Science Foundation Bob Beals
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Pancreatic Cancer Action Network

e This research used resources provided by the National
Science Foundation XSEDE Science Gateways program and
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