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The first hard disk drive in the history of 
computing

An IBM RAMAC 350 hard disk is loaded on board a DC7 - Fall 1957

5 MB of storage

1000 kilograms

$10 000 / MB !
(in 1956)

Could only store
ONE SINGLE IMAGE!
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o Ultracompact (1billion times more than HDD)

o Can last hundreds of thousands of years if kept in a 
cool, dry place

Þ Sequencing of the DNA of a mammoth (1.2 million years old)

Þ Sequencing DNA of a horse bone (700,000 years old)

o Eco-friendly solution

o Low synthesis speed

o High price for synthesizing and sequencing DNA 
(around $1000 / MB today)

*

2016
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It is estimated that 215 petabytes
(215 million gigabytes) can be stored in a 

single gram of DNA!



Cold data
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How to store 
digital data
in synthetic 
DNA?

Encoding/Decoding need to keep adapting to changesThe biochemical 
process will keep 
evolving to achieve
o Reduction of errors

o Faster synthesis and 
sequencing

o Reduction of the costs
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Substitution Insertion Deletion

INDELS



Coding restrictions

Reducing the synthesis error
o Oligos should be short (length < 300 nucleotides)

o Formatting of encoded sequence cutting it into smaller pieces and introducing headers. 

Reducing the sequencing error 
o Homopolymer runs

o Consecutive occurrences longer than 3 or 5 nucleotides (nts) should be avoided.
(ex. AAAAA or TTTTTT …)

o GC content
o %{G, C} ≤ %{A, T}

o Pattern repetitions
o Codewords should not be repeated forming patterns

(ex. ATCATCATC…)
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State of the art on DNA coding

First 
attempt of 
DNA data 
storage

Church et al.
2012

2013
Goldman et al.

First 
constrained 

code

First error 
detection 

& 
correction
Grass et al.

2015

Any kind of data

Error 
detection
Blawat et al.

2016

Random 
access

(for nanopore 
sequencing)

Yazdi et al.
2017

2015
Yadzi et al.

DNA 
editing & 
random 
access 

(for Sanger 
sequencing)

2016
Elrich et al.

Further 
protection 

in 
metadata



State-of-the-art: transcoding

PROBLEM: No Quality/Cost control during compression
9

Most of previous works transcode binary information into a quaternary 
code without taking into consideration the nature of the input data
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State of the art on DNA coding

First 
attempt of 
DNA data 
storage

Church et al.
2012

2019
Dimopoulou et al.

PAIRCODE

2020
Dimopoulou et al.

VQ-based  
DNA coder

2021
Dimopoulou et al.

JPEG-inspired 
DNA coder

2022
Pic et al.

Constrained 
Shannon-Fano 
entropy coder

Mediacoding group in I3S/CNRS lab

Any kind of data Focusing on images

2013
Goldman et al.

First 
constrained 

code

First error 
detection 

& 
correction
Grass et al.

2015

Error 
detection
Blawat et al.

2016

Random 
access

(for nanopore 
sequencing)

Yazdi et al.
2017

2015
Yadzi et al.

DNA 
editing & 
random 
access 

(for Sanger 
sequencing)

2016
Elrich et al.

Further 
protection 

in 
metadata

Image 
processing 
in DNA & 

post-
processing

Pan et al.
2021

JPEG 
transcoder 

for DNA 
coding

Secilmis et al.
2022

JPEG DNA*
2020

* https://jpeg.org/jpegdna/



In loop DNA coding
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Direct DNA encoding allows to optimize the Quality/Cost trade-off during 
compression taking into consideration the nature of the input data

DNA
Coding



Consideration of noise and constraints introduced by new 
chemical processes and sequencing

o Noise models
o Design of error correction quaternary codes

o Robust decoding

o Coding on synthetic polymers: beyond 2 bits / base

Big Data Management
o Structuration of the stored data
o Solutions for random access to data

o Joint sequencing/decoding
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Challenges



I3S laboratory activities on DNA storage
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Compression

Design of image 
compression 

solutions

JPEG DNA 
standardization

Coding

Robust and 
constrained

4-ary and N-ary
code 

construction

Neural 
network

Cleaning of the 
sequenced data

Noise removal 
and error 
correction

Design of 
coding/decoding 

solutions

PEPR
MoleculArXiv

20M€ - 7 years

* PATENT - Methods for storing digital data as, and transforming digital data into, synthetic DNA, M. Dimopoulou, M. Antonini, US n°16/811,985, 2020
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The JPEG DNA Benchmark Codec*
* www.jpeg.org

and Melpomeni Dimopoulou, Eva Gil San Antonio, Marc Antonini, EUSIPCO 2021
(https://tel.archives-ouvertes.fr/tel-03152789)

15

Classical JPEG JPEG DNA BC

AC/DC 
Categories Binary Huffman 3-ary Huffman & 

Goldman et.al.

AC/DC 
Values

Classical binary 
encoding

PAIRCODE 
encoding

http://www.jpeg.org/
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Performance



Wet lab experiment

o To verify the feasibility of storage and 
reconstruction using our encoding algorithm we 
performed a wet lab experiment with several 
images (molecular synthesis)

o For the Kodak image 23 “Parrot”
o Coding ratio : 10.26 bits/nt

o PSNR = 41.5dB

o 2571 oligos (size 200nt) were synthesized*

DNA was encapsulated in DNAshell

(Imagene) * Twist Bioscience 17



Format of the oligos
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Image decoding
DECODED IMAGEMinION SEQUENCING 

TECHNOLOGY
CLUSTERING and 

CONSENSUS FINDING

Assign to each position inside the
sequence the most frequent
symbol along the cluster JPEG DNA BC PSNR = 37.55dB

Collaboration with:
• IPMC (UMR 7275 CNRS and UCA)
• EURECOM
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Conclusion

New compression/coding algorithm for the robust encoding of digital 
images into DNA

Allows to control the trade-off QUALITY/COST

The proposed solution can be applied on any kind of input data format 
(binary, symbols, quantized samples...)

Tackles the problems of biochemical constraints
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Future works

Improve coding/decoding performance

• Improve robustness of coding solutions
• Robustify to sequencing AND synthesis AND storage noise
• New error correction quaternary codes

Deal with greater length oligos (>300nt)

Nanopore sequencing

• Lower sequencing cost 
• Prone to errors -> new solutions for robust decoding based on 

Machine Learning
• Noise models

SmidgIONOxford Nanopore Technologies
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The PEPR MoleculArXiv
Massive data storage on DNA and artificial polymers

Program manager Marc Antonini
• Specialist in data compression and

coding, strong experience in DNA data
coding, chair of the JPEG DNA AHG, co-
founder of the start-up Cintoo and PearCode

Duration 84 months
Budget 20 M€

Lead institution CNRS
• CNRS gathers skills in computer science,

(bio-)chemistry, microfluidic and sequencing
• 16 French laboratories directly involved

including 6 flagship labs that cover the
fields and also involved in the steering
committee

• A potential ecosystem of 50 laboratories

Leader French laboratories directly involved in MoleculArXiv
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The PEPR MoleculArXiv
Create and federate a community

Prime a community
• Direct funding to the laboratories involved in the WP
• Platforms to sustain the sharing of resources and instruments inside the community

Develop a community
• Chairs to promote the recruitment of the future investigators of the field
• ANR calls to foster the creation of strong interdisciplinary projects

Enlarge the community
• Organize recurrent interdisciplinary international Workshops and Summer Schools
• Encourage discussions and exchanges between researchers from different 

communities
• Create the right environment for the creation of a European flagship project

Foster technological transfer
• Push new technologies to industry (pre-maturation or start-up creation)
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Melpo Dimopoulou
Postdoc

UCA-CNRS I3S

Eva Gil San Antonio
PhD student

UCA-CNRS I3S

Xavier Pic
PhD student

UCA-CNRS I3S


