

Le Jumeau numérique pour la mécanique des structures : Quels usages et quelles priorités ?

Florent Mathieu - Séminaire Aristote- 21/09/23

Structural mechanics: climbing the pyramid

Need for credible simulations

- Development teams try to rely more and more on simulations, in order to
 - Explore **more configurations** than with tests alone
 - **Remove tests** from campaigns

In order for customers and certification agencies to trust simulations more, **credibility** has to be built

Why is it important to measure credibility?

Confidence in simulation

• Confidence in a certain family of simulations allows to limit the number of tests for a certain level of the pyramid

What does model credibility mean

" A model is deemed credible when concepts and processes in the model are considered acceptable as an approximation of the modelled system" [van Koon, 2016]

Utimately, a credible model convinces people.

How can this be ensured, or quantified ?

VVUQ (Verification, validation and Uncertainty Quantification)

ASME V&V 10-2019 [Revision of ASME V&V 10-2006 (R2016)]

Standard for Verification and Validation in Computational Solid Mechanics

VVUQ is a systematic approach to assessing the quality and reliability of computational simulations, by assessing (in the case of structural mechanics):

- code quality
- representativity of physics and geometry
- general agreement with test results
- uncertainties

What do we need to achieve a credible model?

Table 4: Example of PCMM Table Assessment and Project Maturity Requirements

A framework

Tools

Credibility framework : the PCMM example

- Predictive Capability Maturity Model for Computational Modeling and Simulation, William L. Oberkampf, Martin Pilch, and Timothy G. Trucano, 2007
- "The Predictive Capability Maturity Model (PCMM) is a new model that can be used to **assess the level of maturity** of computational modeling and simulation (M&S) efforts."

MATURITY				
ELEMENT	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
Representation and Geometric Fidelity		Assessed	Required	
Physics and			Assessed	
Fidelity			Required	
Code		Assessed		
vernication		Required		
Solution Verification	Assessed		Required	
Model Validation		Assessed	Required	
Uncertainty Quantification and Sensitivity Analysis	Assessed			Required

Table 4: Example of PCMM Table Assessment and Project Maturity Requirements

Estimating model maturity

- makes evidence-based decision making easier when deciding on a testing policy
- allows to decide for necessary improvements in the modeling process

This is what we started with

Tools: how about Digital Image Correlation?

DIC is an optical measurement technique that measures **displacement and strain fields** by following a pattern in a series of images

Tools: current challenges for validation (structures mechanics)

- Lot of time spent (underestimated)
- Human errors

Industry-leading workflow

Test lab

Simulation team

EikoTwin - a data fusion platform for FEA

12

Example: Ariane 6 Galileo dispenser

- Scale 1 static test
- Complex structure and loading paths
- Numerous measurement devices: **200 strain gauges, fiber optics, multi-camera measurements** (Digital Image Correlation) for three distinct regions

-> Approach comparison : traditional vs EikoTwin

Maturity assessment and goals

MATURITY Maturity Maturity Maturity Maturity ELEMENT Level 0 Level 1 Level 2 Level 3 Representation and Geometric X Χ Fidelity Physics and Material Model Χ Fidelity Code Out of scope Verification Solution Out of scope Verification Model Χ X Validation Uncertainty Quantification Χ X and Sensitivity Analysis

X assessed X targeted

+ Additional target: **efficiency**

Building simulation credibility

(a) Normalised difference strain field (detail, Measured - Simulated)

Simulation and virtual strain gauge (DIC)

Test results analysis

- Strain field differences allow to highlight areas of maximum test simulation discrepancies.
- Virtual strain gauges can be used to investigate these differences over time.

Data aggregation

Fluid model validation

- Automated sensor import and processing for one-click test/simulation comparison
- Dedicated analysis tools

Lite

EikoTwin DIC

Key results

٠

Seamless data management : save hundreds of hours of postprocessing time

16

Maturity improvements

- 01

MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3		
Representation and Geometric Fidelity			x	x X		
Physics and Material Model Fidelity		х				
Code Verification	Out of scope					
Solution Verification	Out of scope					
Model Validation			X	×		
Uncertainty Quantification and Sensitivity Analysis		×	XX			

X assessed X targeted

+ Additional target: **efficiency**

Impact

3. Less testing, more simulation

- Remove expensive tests from the campaign
- Cut corners et deliver faster durably

Key results

- "We want to go to the next step and propose for **one of these tests to be removed from the campaign**"
- General strategy to save 20% of the development budget by cutting through testing

Confidence in simulation

Key take-home messages

The use of maturity assessment allows

- to visualize and share advances on a certain model type
- to set goals for next steps

The use of data fusion

- helps using fixed processes for given data processing operation
- limits human errors due to Excel/in-house developments
- makes large volume processing humanly manageable (incl. but not limited to DIC)

We should tend to "actual" digital twins, but keep on evaluating their value

Questions?

Download our White Paper !

https://eikosim.com/en/download-whitepaper/

> Simulation validation through the prism of optical measurements

1.2 Are DIC measurements an industrial solution to the problem ?

Digital image Contellation (DIC) is a measurement storbuge that processes optimum taken from carrients to tack and metaot the surface and off and deforming solid. In the mechanical expineering field, this been widely used to monitor and process test diat an table measure and industrial contents, for applications ranging from common metail testing to characterization of massive and complex components (part of an arizence or a helicopter, randows) bridges, nuclear power-plant structures). The method is very versalite and can be optimised indifferently to structures of any shops, site, or material, as ion to gain (and the optimum). On numerous occasions, DIC has been identified as a means to overcome the challenge of validation robustness, since it allows its users to capture massive amounts of (kinematic) experimental data, compared to what more traditional measurement techniques can achieve. By design, classical digital image correlation approaches are well adapted to compute point cloud displacement data, by repeating the previous operation over serveral image subsets where displacement is sought.

However, from a design office perspective, this data format is not ideal, because the experimental data needs to be compared to numerical simulation results (bypical) produced by FE software such as Abagus or Annyo) which will be expressed on the nodes and elements of a line element meah. This seemingly simple difference actually creates a disconnect sometimes we call "two-screens syndrome", where comparison is mostly considered than a visual point of view.

We're proud members of iDICs.

Download the DIC Good Practices Guide at https://idics.org

FOLLOW US

