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Applications : all about commmunications and compute

Any E2E modeling is (or should be ) doing comms & compute Where & can be either
- An addition : not accounting for overlap, asynchronism

- A more complex “tracing and replay” to preserve dependencies

Communications Compute
tracing Tracing, aggregation Papi, Advisor, Emon
modeling LogP, SIMGRID, SST... Analytical, Cycle Accurate....

* Scalability: how easy to move to any other applications.
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Simulation Iandsc:ape for “shared memory” systems
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”What if” Analyses Gavolille et al. 2022
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"What it” Analyses

Offload Advisor

Performance (Gflops /s)
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»

Portion of code profitable to be offloaded
Predict code’s performance if run on an accelerator
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We want to use each of them to
get the most accurate efficiency
and to find the bottleneck level

Execution time on baseline platform (CPU)

Execution time on accelerator. Estimate
assuming bound exclusively by Compute

Execution time on accelerator. Estimate
assuming bound exclusively by caches/memory

* Offload Tax estimate (data transfer + invoke)

Final estimated time on target device (GPU)

v
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» T
X - profitable to Y - too much overhead,
accelerate, t(X) > t(X’) || not accelerable, t(Y)<t(Y’)
t region — max(tcomputm tmemory subsystem) + Tgata transfer tax T Tinvocation tax
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Simulation landscape at Scale
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Full system: Where is the inflection point in Amdahl's law?
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Structural Simulation Toolkit (SST)

= Scalable, parallel DES* aimed to simulate large-scale systems
= Developed by Sandia National Laboratories (http://sst-simulator.org/ )

= Key Features
= Scalability

Uses MPI for graph partitioning to enable million + component simulation
= Multi-scale

= Provides both simple and detailed (~ cycle) models for memory, compute and
network components

= |nter-operability
= Provides support to integrate third-party component models
= E.g,gemb, GPGPUSIm etc..
= Open-source, modular and easily extendable

= Key Components
= SST-Core: Simulation Backend

Takes care of simulation startup, component partitioning, event passing etc..
= SST-Elements: Library containing detailed component models
= E.g.:Merlin (router), DRAMSIm2 (memory), Ariel (CPU)
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Integration Services

SST Core

< Component
< Component

MPI and C++ Threads

Image courtesy: Sandia National Laboratories

Processors

(http://sst-simulator.org/SSTPages/SSTTopDocTutorial/)

Memory

Ariel—PIN-based
Miranda- pattern generator
Prospero—trace execution

Cassini- cache prefetchers
MemHierarchy- caches
Samba-MMU
CramSim-DDR,HBM

Network drivers

Network/NoC

Ember-Communication
patterns

Firefly— Communication
protocols

Merlin-flexible network
model
Kingsley —mesh NoC



http://sst-simulator.org/

Saietal 2022

Two-level Network

Modeling Multi-level Networks

Fully
4

(8,4)
Node-size
Node-count: 32

connected
Inter-node: 2-D HyperX

Intra-node
e — endpoint
mm — endpoint NIC
Bl — intra-node switch
B —inter-node switch
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Two-level network with 128 endpoints
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SIMGRID - Simulation of distributed systems SIMRID
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Simulation of distributed systems

* Leveraging Two decades of validation and improvement driven by Inria + collabs (https://simgrid.org/)
200+ papers
 Open source

- Platforms (machines, networks, disks ...)
- Topology (fat-tree/dragonfly/cluster ...) including congestion.
- MPIl operations : multiple algos/implementations available

- Modelling of both compute and communication phases

Online mode

Leveraging PMPI interface to intercept MPI calls (Unmodified apps)
Offline mode

Generate / Replay traces

inteL .ﬁlééccelerated Casanova etal. 2014 o



A multi-scale problem

intel.

Large upscaling Small upscaling

N

level

Instruction Core Socket
level level

Small upscaling

Large upscaling

N

>

Node
level
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Cluster
level

Granularity is extremely different from instruction up to cluster levels

Merging different tools that have different accuracy and speed

Uncertainties to validate final prediction accuracy

Relevant benchmarks suite is key

Ongoing efforts
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