Challenges in performance modelling at scale

Process

Applications : all about communications and compute

Any E2E modeling is (or should be) doing $comms \oplus compute$ Where \oplus can be either

- An addition : not accounting for overlap, asynchronism
- **A more complex** "tracing and replay" to preserve dependencies

	Communications	Compute
tracing	Tracing, aggregation	Papi, Advisor, Emon
modeling	LogP, SIMGRID, SST	Analytical , Cycle Accurate

• Scalability: how easy to move to any other applications.

Simulation landscape for "shared memory" systems

Simulator	Purpose.	Error	Scale	Speed	Input
cycle-accurate RTL simulators	design verification	0%	1	1I/sec	traces
near-cycle-accurate simulators	 micro-architectural exploration and evaluation performance projections (single core) 	~2-5%	1e3	1k.l/sec	traces
User-space	 architectural exploration performance projections application, compiler, library optimization 	~5-10%	1e6	1M.I/sec	executable or traces
User-space	functional onlyuser-space only	no performance results	1e9	1G.I/sec	executable
Applications	Real runs	n.A	1e12,15,18	T, P,E/sec	executable

"What if" Analyses

Gavoille et al. 2022

"What if" Analyses

<u>Offload Advisor</u>

intel

- Portion of code profitable to be offloaded
- Predict code's performance if run on an accelerator

AI-Accelerated

HPC

6

Simulation landscape at Scale

Structural Simulation Toolkit (SST)

- Scalable, parallel DES* aimed to simulate large-scale systems
 - Developed by Sandia National Laboratories (<u>http://sst-simulator.org/</u>)
- Key Features
 - Scalability
 - Uses MPI for graph partitioning to enable million + component simulation
 - Multi-scale
 - Provides both simple and detailed (~ cycle) models for memory, compute and network components
 - Inter-operability
 - Provides support to integrate third-party component models
 - E.g., gem5, GPGPUSim etc..
 - Open-source, modular and easily extendable
- Key Components
 - SST-Core: Simulation Backend
 - Takes care of simulation startup, component partitioning, event passing etc..
 - SST-Elements: Library containing detailed component models
 - E.g.: Merlin (router), DRAMSim2 (memory), Ariel (CPU)

Image courtesy: Sandia National Laboratories (http://sst-simulator.org/SSTPages/SSTTopDocTutorial/)

Processors	Memory
Ariel – PIN-based Miranda – pattern generator Prospero – trace execution	Cassini – cache prefetchers MemHierarchy – caches Samba – MMU CramSim – DDR,HBM
Network drivers	Network/NoC

Sai et al. 2022

Modeling Multi-level Networks: Two-level Network

Al-Accelerated

intel

SIMGRID - Simulation of distributed systems

Simulation of distributed systems

- Leveraging Two decades of validation and improvement driven by Inria + collabs (https://simgrid.org/)
- 200+ papers
- Open source
- Platforms (machines, networks, disks ...)
- Topology (fat-tree/dragonfly/cluster ...) including congestion.
- MPI operations : multiple algos/implementations available
- Modelling of both compute and communication phases
- Online mode
- Leveraging PMPI interface to intercept MPI calls (Unmodified apps)
- Offline mode
- Generate / Replay traces

A multi-scale problem

- 1. Granularity is extremely different from instruction up to cluster levels
- 2. Merging different tools that have different accuracy and speed
- 3. Uncertainties to validate final prediction accuracy
- 4. Relevant benchmarks suite is key
 - Ongoing efforts

٠

Thank You!

