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Symbolic AI

▶ Symbolic AI: knowledge representation with symbols and
rules manipulating symbols for reasoning.

▶ Traditionally, symbolic AI convenient for settings where the
rules are clear cut, and you can easily obtain input and
transform it into symbols.

▶ Logics for AI:
– formal languages,
– semantics,
– proof procedures to reason about it.
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Subfields in IJCAI’2023 proceedings
▶ Agent-based and Multi-agent Systems
▶ AI Ethics, Trust, Fairness
▶ Computer Vision
▶ Constraint Satisfaction and Optimization
▶ Data Mining
▶ Game Theory and Economic Paradigms
▶ Humans and AI
▶ Knowledge Representation and Reasoning
▶ Machine Learning
▶ Multidisciplinary Topics and Applications
▶ Natural Language Processing
▶ Planning and Scheduling
▶ Robotics
▶ Search
▶ Uncertainty in AI
▶ etc.
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Subfields in KR’23 proceedings

▶ Argumentation
▶ Automated reasoning
▶ Belief merging / revision
▶ Conditionals
▶ Description logics
▶ Epistemic logic
▶ Knowledge representation and machine learning
▶ Multi-agent systems
▶ Strategic reasoning
▶ Systems and robotics
▶ Temporal reasoning
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Reasoning on Ontologies
▶ Ontology: formal specification of some domain with

concepts, objects, relationships between concepts,
objects, etc.

▶ Backbone of ontologies includes:
– taxonomy (classification of objects),
– axioms (to constrain the models of the defined terms).

▶ Well-known ontologies:
– Medical ontology SNOMED-CT.
– NCI Thesaurus (National Cancer Institute, USA).
– Gene ontology (world largest source of information on the

functions of genes).

(`c¨l´a¯sfi¯sfi˚i˜fˇi`c´a˚tˇi`o“nffl `o˝f ”m`e´d˚i`c´a˜l ˚t´eˇr‹m¯s: `d˚i¯sfi`e´a¯sfi`eṡ, ˜bˆoˆd‹y ¯p`a˚r˚tṡ,
`d˚r˚u`gṡ, `eˇt´c.)

▶ Free ontology editor Protégé
http://protege.stanford.edu/

7

http://protege.stanford.edu/


Reasoning on Ontologies
▶ Ontology: formal specification of some domain with

concepts, objects, relationships between concepts,
objects, etc.

▶ Backbone of ontologies includes:
– taxonomy (classification of objects),
– axioms (to constrain the models of the defined terms).

▶ Well-known ontologies:
– Medical ontology SNOMED-CT.
– NCI Thesaurus (National Cancer Institute, USA).
– Gene ontology (world largest source of information on the

functions of genes).

(`c¨l´a¯sfi¯sfi˚i˜fˇi`c´a˚tˇi`o“nffl `o˝f ”m`e´d˚i`c´a˜l ˚t´eˇr‹m¯s: `d˚i¯sfi`e´a¯sfi`eṡ, ˜bˆoˆd‹y ¯p`a˚r˚tṡ,
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Challenges with Ontologies

▶ How to define ontologies and to reason on it?

▶ How to repair faulty ontologies ?

▶ How to add new concepts or axioms without affecting the
old inferences?

▶ More generally, how to extract from the ontologies more
knowledge than what is explicitly specified?

– inferences about individuals,
– concept subsumptions, non-redundancy,
– concept hierarchy, consistency of concepts,
– etc.
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Why Description Logics?

▶ Formal languages for concepts, relations
and instances.

▶ DLs have all one needs to formalise
ontologies.

▶ Computational properties.
– Acceptable trade-off between expressivity and complexity.
– Decidability and often tractability.
– Implementation in tools of the main reasoning tasks.

▶ A remarkable suite of languages and tools.
See e.g.,

– OWL: Web Ontology Language.
– Protégé: ontology editor.
– FaCT++: DL reasoner supporting OWL DL.
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Description Logic ALC in a Nutshell
▶ Language of complex concepts.

C ::= ⊤ | ⊥ | A | ¬C | C ⊓ C | C ⊔ C | ∃r .C | ∀r .C,

with concept names A and role names r .

▶ Interpretation I def
= (∆I , ·I)

– ∆I : non-empty set (the domain).

– ·I : interpretation function such that

AI ⊆ ∆I rI ⊆ ∆I ×∆I aA d

b

A

c

A,B

s

r

s

r

s

▶ CI ⊆ ∆I defined inductively providing the semantics to
complex concepts.
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Concept Inclusions and Decision Problems
▶ General concept inclusions C ⊑ D (GCIs).

E.g., Employee ⊑ ∃WorksFor. ⊤

I |= C ⊑ D def⇔ CI ⊆ DI

▶ Terminological Box (TBox) T : finite set of GCIs.

▶ Interpretation I = (∆I , ·I), TBox T .

I |= T def⇔ for all C ⊑ D ∈ T , I |= C ⊑ D

▶ Concept satisfiability problem w.r.t. general TBoxes:
Input: A concept C0 and a TBox T .

Question: Is there an interpretation I such that I |= T
and CI

0 ̸= ∅?

▶ This problem is EXPTIME-complete.
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Description Logics with Concrete Domains

▶ Need to express concrete properties about data in
ontologies (e.g. age, duration, name, size, etc.)

▶ Examples of concrete domains:
(N, <,+1), (Q, <,=), (N, <,=), ({0,1}∗, <pre, <suf).

▶ General scheme for integrating concrete domains in DLs.
[Baader & Hanschke, IJCAI’91]

– declarative semantics close to the usual semantics for DLs,

– generic extensions of DLs with various concrete domains,

– tableaux-based algorithms combined with theory
reasoning.
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Methods for Handling Concrete Domains

▶ Tableaux-based calculi for “ω-admissible” domains.
[Lutz & Miličić, JAR 2007]

▶ Translation into decidable logics [Carapelle & Turhan, ECAI’16]

– Decidability of concept satisfiability problem w.r.t. general
TBoxes for ALC(N, <,=, (=n)n∈N).

▶ Translation into automata -based problems.
– Concept satisfiability problem w.r.t. general TBoxes for

ALC(N, <,=, (=n)n∈N) in EXPTIME.
[Labai & Ortiz & Šimkus, KR’20]

– Concept satisfiability problem w.r.t. general TBoxes for
ALC({0,1}∗, <pre) in EXPTIME. [Demri & Quaas, JELIA’23]

(`c´o“n¯sfi˚tˇr`a˚i‹n˚t `a˚u˚t´o“m`a˚t´affl ˜f´o˘rffl `d`a˚t´affl ”wˆo˘r`d¯s `o˘rffl `d`a˚t´affl ˚tˇr`e´eṡ)
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Temporal Logics with Concrete Domains
▶ Concrete domains in TCS:

– Satisfiability Modulo Theory (SMT) solvers.
String theories, arithmetical theories, array theories, etc.

– Verification of database-driven systems.

– Temporal logics with arithmetical constraints.

▶ “Infinitely often x is a prefix of the next value for y”:
GF(x <pre Xy).

▶ Satisfability problem for CTL∗(Z, <,=, (=n)n∈Z) is
decidable in 2EXPTIME.

[Carapelle et al, JCSS 2016; Demri & Quaas, CONCUR’23]

( CTL∗: ”wfle¨l¨l-˛k‹n`o“w“nffl ˜l´oˆgˇi`c ˚r`e¨l´a˚t´e´dffl ˚t´o ”m`oˆd`e¨l-`c‚h`e´c‚k˚i‹n`g)
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Another Success Story: Logics of Strategic Ability

▶ To express that a coalition of agents has a collective
strategy to achieve some goal and to reason on it.

▶ A strategy is a conditional plan intended to work whatever
the other agents do.

▶ Well-known specimens.
– Coalition Logic CL. (one-step strategies)

– Alternating-time temporal logic ATL.
(generalisation of temporal logics)

– Strategy Logic SL. (explicit quantification over strategies)

(”w˘i˚t‚hffl `affl ˛h˚u`g´e `a‹m`o˘u‹n˚t `o˝f ”vˆa˚r˚i`a‹n˚tṡ)
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Multi-Agents Systems

▶ Multi-agent systems are transition systems in which
transitions are fired when simultaneous actions are
performed by different agents.

pos0

pos2 pos1

(push,wait)

(w
ait
,p

us
h)

(wait,wait), (push,push)

(wait,push)

(push,wait)

(wait,wait)
(push,push)

(wait,push)

(p
us

h,
wait

)

(wait,wait)
(push,push)

31



Multi-Agents Systems

▶ Multi-agent systems are transition systems in which
transitions are fired when simultaneous actions are
performed by different agents.

pos0

pos2 pos1

(push,wait)

(w
ait
,p

us
h)

(wait,wait), (push,push)

(wait,push)

(push,wait)

(wait,wait)
(push,push)

(wait,push)

(p
us

h,
wait

)

(wait,wait)
(push,push)

32



Multi-Agents Systems

▶ Multi-agent systems are transition systems in which
transitions are fired when simultaneous actions are
performed by different agents.

pos0

pos2 pos1

(push,wait)

(w
ait
,p

us
h)

(wait,wait), (push,push)

(wait,push)

(push,wait)

(wait,wait)
(push,push)

(wait,push)

(p
us

h,
wait

)

(wait,wait)
(push,push)

33



ATL-like logics
▶ ⟨⟨A⟩⟩Φ: coalition A has a collective strategy to enforce the

temporal property Φ.

▶ A collective strategy is a tuple of individual strategies.

φ ::= p | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩ Xφ | ⟨⟨A⟩⟩ Gφ | ⟨⟨A⟩⟩ φUφ

p ∈ PROP A ⊆ Agt

▶ M, s |= ⟨⟨A⟩⟩Gφ
def⇔

∃ strategy σ such that
∀ computations λ = s0 −→ s1 . . . from s respecting σ,
∀ positions i , we have M, si |= φ.

▶ Tractable model-checking problems and automata-based
satisfiability-checking decision procedures.
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More Ingredients
▶ Resource-aware logics:

– actions have costs/weights,
– formulae may specify constraints about such (cumulative)

costs/weights.
E.g. [Belardinelli & Demri, AI 2021; Bulling & Goranko, AAMAS 2022]

(˚r`e¨l´a˚tˇi`o“n¯sfi˛h˚i¯p¯s ”w˘i˚t‚hffl `e›n`eˇr`g›y `g´a‹m`eṡ, `c´o˘u‹n˚t´eˇrffl ”m`a`c‚h˚i‹n`eṡ)

▶ Strategic reasoning with knowledge operators.
See e.g. [Agotnes, Synthese 2006]

▶ Restriction on agents’ knowledge.
– Strategy logics with imperfect information.
– Undecidability can be obtained easily.
– Fragments including those with hierarchies of knowledge

leads to less expensive reasoning tasks.
See e.g. [Berthon et al, TOCL 2021]
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In My Reading List
▶ Well-identified potential interactions between machine

learning and symbolic AI.
– Machine learning can be used to solve logical problems

and to accelerate verification/automated techniques.
– Logical methods can be used to complement learning

algorithms to improve the precision and explanability.

(˛h‹y¨b˘r˚i`d˚i˚z´a˚tˇi`o“n?)

▶ Unique characterisability and learnability of temporal
instance queries [Fortin et al., KR’22]

(E”x´a‹m¯p˜l´e ¯sfi`eˇtṡ (E+,E−) ˚t´o `c‚h`a˚r`a`cˇt´eˇr˚i¯sfi`e ˚t´e›m¯p`o˘r`a˜l ˜f´o˘r‹m˚u˜l´a`e)
▶ An SMT-Based approach for verifying binarized neural
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In My Reading List
▶ Well-identified potential interactions between machine

learning and symbolic AI.
– Machine learning can be used to solve logical problems

and to accelerate verification/automated techniques.
– Logical methods can be used to complement learning

algorithms to improve the precision and explanability.

(˛h‹y¨b˘r˚i`d˚i˚z´a˚tˇi`o“n?)
▶ Unique characterisability and learnability of temporal

instance queries [Fortin et al., KR’22]
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Logics for AI: the Great Return ?

▶ Beyond knowledge representation and reasoning for

description logics, strategy logics, dynamic epistemic

logics, etc. ? (”n`e›w `a¯p¯p˜lˇi`c´a˚tˇi`o“n¯s?)

▶ Arithmetical theories for the verification of neural networks.

(”n`e›w `a˚r˚i˚t‚h‹m`eˇtˇi`c´a˜l ˚t‚h`e´o˘r˚i`eṡ `a‹n`dffl ¯p˚r`o˝b˝l´e›m¯s?)

▶ Learning logical formulae and unique characterisations.

(”n`e›w ˜l´oˆgˇi`c´a˜l ¯p˚r`o˝b˝l´e›m¯s?)
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