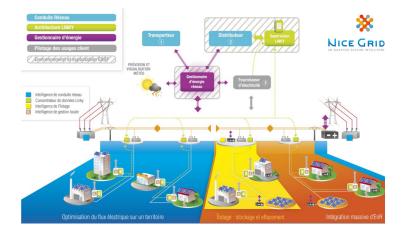
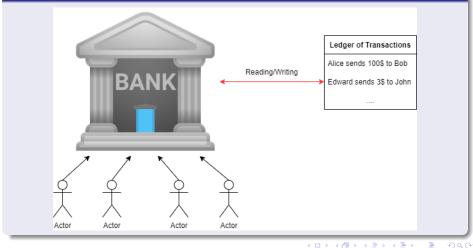
Technique de protection des données privées dans le contexte des marchés locaux d'énergie


Victor Languille (SEIDO: EDF/Télécom Paris)

Directeur: Gérard Memmi (LTCI, Télécom Paris) Co-Directeur: David Menga (EDF) Collaborateur: Hamza Zarfaoui



Microgrids

Development of renewable energy \Rightarrow Multiplication of local producers

Central Authority

Three different types of issues: Control, Single point vulnerability, Privacy:

Three different types of issues: Control, Single point vulnerability, Privacy:

Control issues

Can refuse some transactions from your account

Can block some transaction from / to your account

Three different types of issues: Control, Single point vulnerability, Privacy:

Control issues

Can refuse some transactions from your account

Can block some transaction from / to your account

Single point vulnerability issue

If the bank server is attacked, the whole history of transaction may be lost.

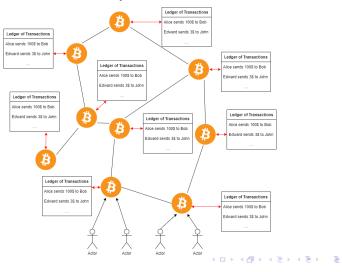
Three different types of issues: Control, Single point vulnerability, Privacy:

Control issues

Can refuse some transactions from your account

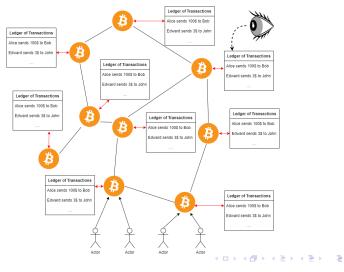
Can block some transaction from / to your account

Single point vulnerability issue


If the bank server is attacked, the whole history of transaction may be lost.

Privacy issues

Your assets and holdings Your family and professional activities Your habits The diseases you suffer


A (1) > A (2) > A

Bitcoin avoids centralised authority

5/16

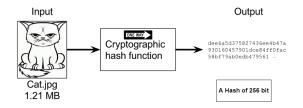
Permissionless ledger \Rightarrow Everybody has access to transaction data!

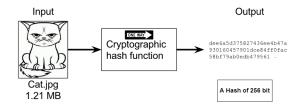
Solution to the privacy-decentralisation dilemma ?

Solution to the privacy-decentralisation dilemma ?

Zero-Knowledge Proofs !

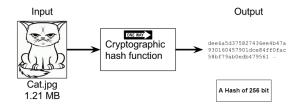
Or: How to prove that you know the solution to a certain problem without revealing it.

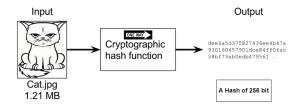

• Prover produces a proof π , concretely a string of bits.


- Prover produces a proof π , concretely a string of bits.
- Verifier applies a specific algorithm to π and y, returning 1 if the proof is valid; 0 otherwise.

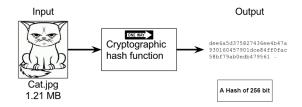
- Prover produces a proof π , concretely a string of bits.
- Verifier applies a specific algorithm to π and y, returning 1 if the proof is valid; 0 otherwise.
- Prover can produce a valid proof if and only if he knows **x**.

- Prover produces a proof π , concretely a string of bits.
- Verifier applies a specific algorithm to π and y, returning 1 if the proof is valid; 0 otherwise.
- Prover can produce a valid proof if and only if he knows x.
- The proof leak 0-information about x.

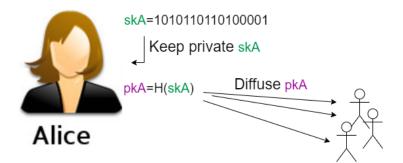

- Prover produces a proof π , concretely a string of bits.
- Verifier applies a specific algorithm to π and y, returning 1 if the proof is valid; 0 otherwise.
- Prover can produce a valid proof if and only if he knows x.
- The proof leak 0-information about x.
- Bonus: efficiency. It is exponentially faster to verify a succinct ZKP than to compute P knowing x


Essentials properties

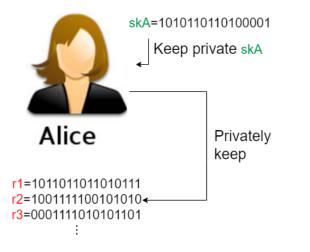
Any size input ightarrow 256 bit output


Essentials properties

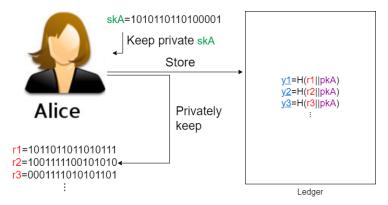
Any size input \rightarrow 256 bit output Any little change in the input \rightarrow completely different output


Essentials properties

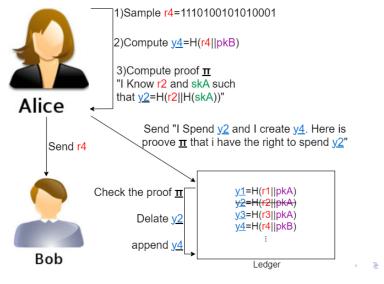
Any size input \rightarrow 256 bit output Any little change in the input \rightarrow completely different output **Easy**: given x, computes y = H(x)


Essentials properties

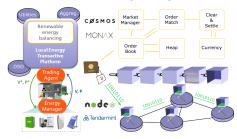
Any size input \rightarrow 256 bit output Any little change in the input \rightarrow completely different output **Easy**: given x, computes y = H(x)**Hard**(i.e, practically infeasible): given y, find x such that y = H(x) Secret identifier (skA) to spend coins Public identifier (pkA) to receive coins


Anonymous Cruptocurrency on Public Ledger

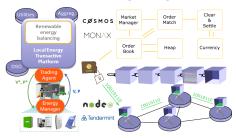
Coins represented as random numbers


イロト 不同 とくほ とくほとう

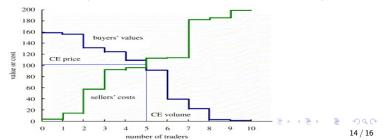
Hash of existing coins are stored on the ledger

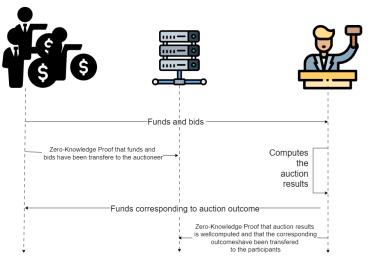

Anonymous Cruptocurrency on Public Ledger

Transaction from Alice to $\mathsf{Bob} = \mathsf{Destruction}$ of one Alice's coin and creation to one Bob 's coin.

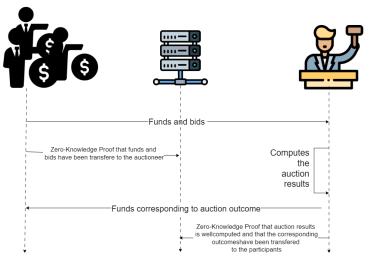


13/16


Energy market use case by José Horta [horta].


Energy market use case by José Horta [horta].

General auction mechanism (in particular multi unit double auction).



Proposed scheme based on an extension of Zerocash 😢

イロト 不同 とくほ とくほとう

Proposed scheme based on an extension of Zerocash ②

Anonymity against the auctioneer and the ledger. Confidentiality against the ledger. 15/16

Thank you for your attention.

Thank you for your attention.

Any question?